College of Computer & Information Science Northeastern University CS 7880: Network Algorithms Spring 2016 15 March 2016 Scribe: Giorgos Zirdelis

• Streaming

– Distinct items (cont.)

1 Distinct items

In the streaming model, we see a stream σ of m elements drawn for a universe $\{1, \ldots, n\}$. We process the stream in order, and compute a function ϕ over the stream σ . The function ϕ is essentially a function of the frequency distribution of σ , namely $f = \langle f_1, \ldots, f_n \rangle$.

The goal is to approximate ϕ using low space. Specifically, assume that \mathcal{A} is a randomized algorithm with output $\mathcal{A}(\sigma)$. We say that \mathcal{A} is a (ε, δ) approximation of ϕ , if for all streams it holds that

$$(1 - \varepsilon)\phi(\sigma) \le \mathcal{A}(\sigma) \le (1 + \varepsilon)\phi(\sigma)$$

with probability $1 - \delta$ for some $\varepsilon, \delta > 0$. Ideally, we want to use space $O(\log m + \log n)$ or in general sublinear in terms of n and m.

To approximate the number of distinct elements in a stream σ , we want to do something different for each distinct element and do the same thing for the same elements. For that reason, we will use hashing. Assume we have a universal hash function $h: [n] \to [n]$ and suppose that k is the number of distinct elements in σ .

Before we continue with the analysis we recall the problem of throwing k balls into n bins, where $k \leq n$. Let X denote the number of bins that will be occupied. We want to know the value of X in expectation. We have that,

$$\Pr[\text{Bin is empty}] = \left(1 - \frac{1}{n}\right)^k.$$

Therefore,

$$\mathbb{E}[X] = n\left(1 - \left(1 - \frac{1}{n}\right)^k\right).$$

Because we have k balls we know that $\mathbb{E}[X] \leq k$ so we want a lower bound. Expand $\left(1 - \frac{1}{n}\right)^k$ for two steps using the binomial formula:

$$\underbrace{1-\frac{k}{n}+\binom{k}{2}\frac{1}{n^2}}_{k} = 1-\frac{k}{n}+\frac{k(k-1)}{2n^2} \ge \left(1-\frac{1}{n}\right)^k$$

Hence,

$$\mathbb{E}[X] \ge n\left(1 - \left(1 - \frac{k}{n} + \frac{k(k-1)}{2n^2}\right)\right) = k - \frac{k(k-1)}{2n^2} \ge \frac{k}{2}$$

Returning back to counting distinct elements, one can make an analogy of the previous balls & bins problems and hashing. Instead of counting occupied bins, assume we focus on a small fraction of n, i.e. a bucket of size αn , where $\alpha < 1$ and count how many elements land in that bucket. On expectation we will have αk elements in a bucket of size αn . By setting $\alpha = \frac{1}{k}$ and relying only on expectation we can say that if there is one element in that bucket we have approximately k distinct elements. If there is more that one than one element then approximately we have more that kelements, and if there is no element then we have less than k elements.

The algorithm that uses hashing works as follows: let zeros(x) denote the number of trailing zeros of x,

 $\begin{array}{l} \mu \leftarrow 0; \\ \textbf{while } a_j \in \sigma \ \textbf{do} \\ & \left| \begin{array}{c} z \leftarrow \operatorname{zeros}(h(a_j)); \\ \textbf{if } \mu < z \ \textbf{then} \\ & \left| \begin{array}{c} \mu \leftarrow z; \\ \textbf{end} \end{array} \right. \\ \textbf{end} \\ \textbf{return } 2^{\mu}; \end{array} \right. \end{array}$

The intuition for this algorithm can be summarized with the following table:

# trailing zeros	# elements in $[n]$	# elements in area $\frac{n}{\# \text{ trailing zeros}}$ (expected)
1	n/2	k/2
2	n/4	k/4
÷	:	:
$\log k$	n/k	1

Next we calculate the probability that k is close to the estimate 2^{μ} of the algorithm using the following cases:

 $\underline{\text{Case 1}}$

 $\Pr[k > 2^r 2^{\mu}] \leq \Pr[\text{no element was mapped with } 1 + \mu \text{ trailing zeros}]$

Let Y denote the event: "number of elements that were mapped with $1+\mu$ trailing zeros".

 $\underline{\text{Case } 2}$

 $\Pr[k < 2^{-r} 2^{\mu}] \leq \Pr[\text{some element was mapped with } \mu \text{ trailing zeros}]$

Let Z denote the event: "number of elements that were mapped with μ trailing zeros".

Note that r is a constant that we will substitute later.

First we calculate the expectation of events Y, Z and then use Chebyshev's and Markov's inequality respectively to bound the probability.

 $\underline{\text{Case 1}}$

$$\mathbb{E}[Y=0] = \frac{k}{2^{1+\mu}} > \frac{2^r 2^{\mu}}{2^{1+\mu}} = \frac{2^r}{2} = 2^{r-1}$$

 $\underline{\text{Case } 2}$

$$\mathbb{E}[Z \ge 1] = \frac{k}{2^{\mu}} < \frac{2^{-r}2^{\mu}}{2} = \frac{1}{2^r}$$

By Markov's inequality we have that $\Pr[Z \ge 1]$ is no more than $\mathbb{E}[Z \ge 1] = 2^{-r}$.

Define $X_i = \begin{cases} 1, & \text{if the i-th distinct elem. is mapped to } \mu + 1 \text{ trailing zeros (with prob. } 1/2^{\mu+1}) \\ 0, & \text{otherwise} \end{cases}$

Then it is the case that $Y = \sum_{i=1}^{k} X_i$ and $\operatorname{Var}[Y] = \sum_{i=1}^{k} \operatorname{Var}[X_i]$. But $\operatorname{Var}[X_i] \leq \mathbb{E}[X_i^2] = \mathbb{E}[X_i] = 1/2^{\mu+1}$, and so $\sum_{i=1}^{k} \operatorname{Var}[X_i] = k/2^{\mu+1}$.

Using Chebyshev's inequality $\Pr[|Y - \mathbb{E}[Y]| \ge \varepsilon \mathbb{E}[Y]] \le \frac{\operatorname{Var}[Y]}{\varepsilon^2}$ for $\varepsilon = 1$, we obtain that

$$\Pr[Y=0] \le \frac{k/2^{\mu+1}}{(k/2^{\mu+1})^2} = \frac{2^{\mu+1}}{k}$$

and because we are in the event where $k > 2^{\mu}2^{r}$ it follows that

$$\Pr[Y=0] \le 1/2^{r-1}$$
.

By setting r = 3, the previous algorithm will return an estimate that is with probability $\frac{3}{4}$ between $\frac{k}{8}$ and k, and with probability $\frac{7}{8}$ between k and 8k. In total the probability of the estimate landing in $\frac{k}{8}$ and 8k is no less than $1 - \frac{1}{8} - \frac{1}{4} = \frac{5}{8}$.

To amplify the probability of landing in the above interval, we run the same algorithm in parallel with a different hash function each time, for $t = c \log(\frac{1}{\delta})$ times and return the median of all returned values. The probability that the median lands outside the interval $\left[\frac{k}{8}, 8k\right]$ is less than $\binom{t}{t/2} \left(\frac{3}{8}\right)^{t/2} \leq \delta$ by setting c properly.

While Markov's inequality requires no independence for events, Chebyshev's inequality requires pairwise independence. Hence, we need a 2-wise independent hash function for the algorithm. There are 2-wise independent hash function families that have polynomial number of hash functions so we need $\log(n^{c'}) = c' \log n$ bits to represent them for some constant c'. We also need $O(t \log k)$ bits to store the returned values of the all the parallel runs of the algorithm. In total we need logarithmic space in terms of n.