
College of Computer & Information Science Spring 2016
Northeastern University 15 March 2016
CS 7880: Network Algorithms Scribe: Giorgos Zirdelis

• Streaming

– Distinct items (cont.)

1 Distinct items

In the streaming model, we see a stream σ ofm elements drawn for a universe
{1, . . . , n}. We process the stream in order, and compute a function ϕ over
the stream σ. The function ϕ is essentially a function of the frequency
distribution of σ, namely f = ⟨f1, . . . , fn⟩.

The goal is to approximate ϕ using low space. Specifically, assume that
A is a randomized algorithm with output A(σ). We say that A is a (ε, δ)
approximation of ϕ, if for all streams it holds that

(1− ε)ϕ(σ) ≤ A(σ) ≤ (1 + ε)ϕ(σ)

with probability 1 − δ for some ε, δ > 0. Ideally, we want to use space
O(logm+ log n) or in general sublinear in terms of n and m.

To approximate the number of distinct elements in a stream σ, we want to
do something different for each distinct element and do the same thing for
the same elements. For that reason, we will use hashing. Assume we have
a universal hash function h : [n]→ [n] and suppose that k is the number of
distinct elements in σ.

Before we continue with the analysis we recall the problem of throwing k
balls into n bins, where k ≤ n. Let X denote the number of bins that will be
occupied. We want to know the value of X in expectation. We have that,

Pr[Bin is empty] =

(
1− 1

n

)k

.

Therefore,

E[X] = n

(
1−

(
1− 1

n

)k
)
.

Because we have k balls we know that E[X] ≤ k so we want a lower bound.

Expand
(
1− 1

n

)k
for two steps using the binomial formula:

two step expansion︷ ︸︸ ︷
1− k

n
+

(
k

2

)
1

n2
= 1− k

n
+

k(k − 1)

2n2
≥
(
1− 1

n

)k

Hence,

E[X] ≥ n

(
1−

(
1− k

n
+

k(k − 1)

2n2

))
= k − k(k − 1)

2n2
≥ k

2

Returning back to counting distinct elements, one can make an analogy
of the previous balls & bins problems and hashing. Instead of counting
occupied bins, assume we focus on a small fraction of n, i.e. a bucket of
size αn, where α < 1 and count how many elements land in that bucket.
On expectation we will have αk elements in a bucket of size αn. By setting
α = 1

k and relying only on expectation we can say that if there is one
element in that bucket we have approximately k distinct elements. If there
is more that one than one element then approximately we have more that k
elements, and if there is no element then we have less than k elements.

The algorithm that uses hashing works as follows: let zeros(x) denote the
number of trailing zeros of x,

µ← 0;
while aj ∈ σ do

z ← zeros(h(aj));
if µ < z then

µ← z;
end

end
return 2µ;

The intuition for this algorithm can be summarized with the following table:

trailing zeros # elements in [n] # elements in area n
trailing zeros (expected)

1 n/2 k/2

2 n/4 k/4
...

...
...

log k n/k 1

2

Next we calculate the probability that k is close to the estimate 2µ of the
algorithm using the following cases:

Case 1

Pr[k > 2r2µ] ≤ Pr[no element was mapped with 1 + µ trailing zeros]

Let Y denote the event: “number of elements that were mapped with 1+ µ
trailing zeros”.

Case 2

Pr[k < 2−r2µ] ≤ Pr[some element was mapped with µ trailing zeros]

Let Z denote the event: “number of elements that were mapped with µ
trailing zeros”.

Note that r is a constant that we will substitute later.

First we calculate the expectation of events Y,Z and then use Chebyshev’s
and Markov’s inequality respectively to bound the probability.

Case 1

E[Y = 0] =
k

21+µ
>

2r2µ

21+µ
=

2r

2
= 2r−1

Case 2

E[Z ≥ 1] =
k

2µ
<

2−r2µ

2
=

1

2r

By Markov’s inequality we have that Pr[Z ≥ 1] is no more than E[Z ≥ 1] =
2−r.

DefineXi =

{
1, if the i-th distinct elem. is mapped to µ+ 1 trailing zeros (with prob. 1/2µ+1)

0, otherwise

Then it is the case that Y =
∑k

i=1Xi and Var[Y] =
∑k

i=1Var[Xi]. But

Var[Xi] ≤ E[X2
i] = E[Xi] = 1/2µ+1, and so

∑k
i=1Var[Xi] = k/2µ+1.

Using Chebyshev’s inequality Pr[|Y − E[Y]| ≥ εE[Y]] ≤ Var[Y]
ε2

for ε = 1, we
obtain that

Pr[Y = 0] ≤ k/2µ+1

(k/2µ+1)2
=

2µ+1

k

3

and because we are in the event where k > 2µ2r it follows that

Pr[Y = 0] ≤ 1/2r−1.

By setting r = 3, the previous algorithm will return an estimate that is with
probability 3

4 between k
8 and k, and with probability 7

8 between k and 8k.

In total the probability of the estimate landing in k
8 and 8k is no less than

1− 1
8 −

1
4 = 5

8 .

To amplify the probability of landing in the above interval, we run the same
algorithm in parallel with a different hash function each time, for t = c log(1δ)
times and return the median of all returned values. The probability that

the median lands outside the interval [k8 , 8k] is less than
(

t
t/2

) (
3
8

)t/2 ≤ δ by
setting c properly.

While Markov’s inequality requires no independence for events, Chebyshev’s
inequality requires pairwise independence. Hence, we need a 2-wise inde-
pendent hash function for the algorithm. There are 2-wise independent hash
function families that have polynomial number of hash functions so we need
log(nc′) = c′ log n bits to represent them for some constant c′. We also need
O(t log k) bits to store the returned values of the all the parallel runs of the
algorithm. In total we need logarithmic space in terms of n.

4

