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1 Introduction

In this lecture, we analyze the Push-Pull protocol for rumor spreading. In the rumor spreading
problem, we have a rumor originating at a source node in a given graph, and the goal is to broadcast
the rumor to every node in the graph. Last session, we introduced two well-studied algorithms for
rumor spreading, push and pull.

e push: In each round, each informed node informs a random neighbor.

e pull: In each round, each uninformed node seeks from a random neighbor.

We have also seen that the Push protocol completes rumor spreading in O(nlogn) steps with high
probability. Today, we will derive a tight bound on the Push-Pull protocol, as a function of the
conductance of the underlying graph. This lecture is entirely based on the elegant analysis due to
Giakkoupis [1].

1.1 Two examples on push and pull

e push on star: Assume that on a star graph with n nodes, the central node r is informed. It
is easy to verify that the probability that a specific node v, a neighbor of r, becomes informed
in one round is ﬁ, and the expected number of rounds which v becomes informed is n — 1.
Using a standard Coupon Collector argument, we can show that the expected number of

rounds to broadcast the gossip to every node in this graph is nlnn.

e pull on star: In this example, we consider two cases; One is the case that the informed node
r is the central node in the star graph. Then it takes only one round for every uniformed
node to get the information. Second is the case that the informed node r is not the central
node. Then, it takes ©(n) rounds to inform every node in this graph.

We thus find that push works fast when the rumor is at a node with high degree, while pull is
effective at moving the rumor from a node with low degree to a node with high degree. Combining
the complementary strengths of these two protocols enables the desired bound on the push-pull
protocol.

e push-pull: In each round, each node v selects a neighbor uniformly at random; if v already
has the neighbor, it pushes the rumor the selected neighbor; otherwise, if the neighbor has
the rumor, then v pulls from the neighbor. If neither v nor its neighbor has the rumor, then
nothing is transferred.



2 Analysis of push-pull algorithm

Theorem 1. In graph G(V, E) with n vertices and conductance ¢, the push-pull algorithm completes

the task in O(loin) rounds whyp.

Definition 1. We recall the definition of conductance ¢ in a graph G(V, E).
o EES)
0#scv min{ Vol(S), Vol(S)}
where Vol(S) =Y, cqdv and E(S,S) is the set of edges of the graph that crosses the S, S cut.

Before proving Theorem 1, we present two lemmas which help us to complete the proof of the
theorem.

Lemma 1. Suppose in a graph G(V, E), the mazimum degree vertez is in the set of informed nodes
S. Then, in O(logn) rounds of pull algorithm, S =V whp.

Lemma 2. In O(lo%) rounds of push algorithm, max degree vertex is informed and is in S whp.

Remark 1. By high probability we mean probability of at least 1 — n% for some B > 0.

Proof of Theorem 1: Lemma 1 and 2 yield the proof of Theorem 1. O

We now argue that Lemma 1 and 2 are, in fact, equivalent and proving one of the lemmas implies
the correctness of the other one. In other word, lemma 1 = lemma 2 and lemma 2 = lemma
1. In the following, we establish this claim.

Let Epysh(u, v,t) be the event that if node w is informed at time 0, then in at most ¢ rounds of push,
v is informed, and &y (v, u,t) be the event that if node v is informed at time 0, then in at most ¢
rounds of pull, w is informed.

In the following, we show that:

Pr(&push(u, v, t)] = Pri&puu(v, u, t)]

Consider that at each round (from round 1 to t), each node (independently from it has or it doesn’t
have the rumor), it picks on random edge or one random neighbor.

The space for such decisions ) are points of the form z = ([], dy)". Then, if z € Epysn(u, v,t), it
means there are some edges at each round that let rumor starts from u and reaches v in at most
t rounds. This exactly means that using that edges v can pull rumor from v during these rounds.
Thus z € Epuu(v, u,t).

(1'37 Loy -eny xn)



Then we have:
z € Epush (U, 0,t) = x € Epy(v, u,t)

This implies that
Pr[é'push (u, v, t)] = Pr[c‘)pu”(v, u, t)]
Having above argument, it suffices to prove only one of the above lemmas. Here we give a proof

for lemma 1.

The proof for lemma 1 relies on the following key claim on the pull protocol. For any integer ¢ > 0,
let S; denote the set of informed nodes, and U; the set of uninformed nodes at time ¢.

Lemma 3. In pull, consider two cases:
a. If A < Vol(Sp) < |E|, then after t = f%] rounds, we have the following:

Pr[Vol(Sy) > min(2Vol(So, |E|))] >

N

b. If Vol(Sp) > |E|, then after t = [21 rounds, we have the following:

VOZ(U()) 1

Pr[Vol(Uy) < —— 7] 2

O |

Proof: We only prove part a. The second part has a similar argument. Assume that at round 4,
Vol(S;—1) < |E|, then from the definition of graph conductance, we have:

|E(Si—1,Ui-1)| > ¢ - Vol(S; 1)
> [¢- Vol(Sp)]

Let M = [¢-Vol(Sp)], and let E; be an arbitrary subset of |E(S;—1,U;_1)| of size M. Then for any
node u in U;_1, we define g;(u) be the number of edges u has in E;, and we define random variable
L;(u) as following:

Li(u) 1 if u pulls using an edge in F;
() =
' 0 otherwise

Then, we define random variable L; = ) dy - Li(u). Then, it is easy to see that:

uelU; 1
VOl(SZ) > VOI(SZ'_1) + Li

Now, we want to see how the Vol(S;) grows from round to round. Assuming all random choices
until now are fixed, we want to find the expected value of L;, using linearity of expectation we
have:

uelU; 1

- ¥ gy
uelU;_1 w

= > lw)=M
uelU; 1



As we see at each round the size of S, set of informed nodes, grows by M in expectation.
Let’s define £; = L1 + La + ... + L;, then using linearity of expectation, we get F[L;] = iM.

For t = % rounds, from |Sy| we reach to Sy with size at least 2|Sy| in exception, each round

increases by M. Since M is [¢ - Vol(Sp)] (from its definition), t ~ J\%i(ligi) R~ é Note that so far

we showed size of S; > 25y, if its size increases by M at every round which is the expectation.
Now we use Chebyshev’s bound to show that for ¢t = [%1, the probability that Vol(S;) < 2Vol(Sp)

is less than %

Remark 2. (Chebyshev’s inequailiy) For random variable X, with expected value u, we have
the following:
E[(X —p)? _ Var(X)
62 2
Note that Chebyshev’s inequality is just Markov’s inequality on second moment of X.

Pr{|X — ] > 8] = Pr[(X — p) > &%) <

Before applying Chebyshev’s inequality, we need to figure out Var(L;). We know £; = > j<i L
Although Lj;s are not independent, it can be proved that Var(L;) = 3_,; Var(L;) [1]. For Var(L;)

we have:

Var(Ly) = E[(( Y. Lj(u) - du) — M)?]
uelUj_1

=( Y FBlLjw)? dj)) - M?

uelUj_1
< > ElLj(u)-d}]
uelU;_1
< Y A-E[Lj(u)-d =AM

’U,EUjfl

Thus, it implies that Var(L;) = iAM.

For t = [%], we have:
Pr[Vol(S;) < 2Vol(Sp)] = Pr[Vol(S) — Vol(Sp) < Vol(Sp)
< Pr[L: < Vol(Sy)
< Pr[|£; — Vol(So)| > tM — Vol(Sp)
< Pr[|£; — Vol(So)| > 3Vol(Sp)

(Apply Chebyshev’s inequality here)
__tMA _ 4-6-Vol(Sp)A
- 9V01(So)2 9. ¢ - VO](S())2

)

(From assumption in part a of lemma 3, Vol(Sp) >

A
4
< =
-9



This completes the proof of lemma 3 part a. O
Now we are ready to prove lemma 1.

Proof of Lemma 1: Using lemma 3, after each % rounds Vol(S;) with at least half probability
becomes twice. The question is after how many rounds the volume of informed nodes becomes

greater than |E|. The expected number of rounds is log (V(‘)ﬁg )) . %. But this is not enough, and
0

we need to bound the probability that it takes a longer time for volume of informed nodes to hit
|E].

Here we abstract our problem with coin toss problem with same parameter. Assume that we have
a coin that comes head with probability at least % How many times should we toss the coin to get
at least 2logn heads. If we toss it 8logn times, what is the following probability:

Pr[ # heads < 2logn]= 7

We define X; be the random variable for the outcome of ith coin toss:

1 if coin turns up head
i = .
0 otherwise

And we define X = > | X;. Then we have y = E[X] = 4logn. Using standard Chernoff bound:

ogmn 1
Pr[X <2logn] < e iTE" = NG

This implies that O(log(v%(‘s)) : %) = 0(10(%”) rounds suffices for Volume of S to hit |E| whp.
Using similar argument, O(lo(%") rounds suffices for volume of U to get to 0 whp. This completes

the proof for lemma 1.

O
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