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1 Introduction

In this lecture, we analyze the Push-Pull protocol for rumor spreading. In the rumor spreading
problem, we have a rumor originating at a source node in a given graph, and the goal is to broadcast
the rumor to every node in the graph. Last session, we introduced two well-studied algorithms for
rumor spreading, push and pull.

• push: In each round, each informed node informs a random neighbor.

• pull: In each round, each uninformed node seeks from a random neighbor.

We have also seen that the Push protocol completes rumor spreading in O(n log n) steps with high
probability. Today, we will derive a tight bound on the Push-Pull protocol, as a function of the
conductance of the underlying graph. This lecture is entirely based on the elegant analysis due to
Giakkoupis [1].

1.1 Two examples on push and pull

• push on star: Assume that on a star graph with n nodes, the central node r is informed. It
is easy to verify that the probability that a specific node v, a neighbor of r, becomes informed
in one round is 1

n−1 , and the expected number of rounds which v becomes informed is n− 1.
Using a standard Coupon Collector argument, we can show that the expected number of
rounds to broadcast the gossip to every node in this graph is n lnn.

• pull on star: In this example, we consider two cases; One is the case that the informed node
r is the central node in the star graph. Then it takes only one round for every uniformed
node to get the information. Second is the case that the informed node r is not the central
node. Then, it takes Θ(n) rounds to inform every node in this graph.

We thus find that push works fast when the rumor is at a node with high degree, while pull is
effective at moving the rumor from a node with low degree to a node with high degree. Combining
the complementary strengths of these two protocols enables the desired bound on the push-pull
protocol.

• push-pull: In each round, each node v selects a neighbor uniformly at random; if v already
has the neighbor, it pushes the rumor the selected neighbor; otherwise, if the neighbor has
the rumor, then v pulls from the neighbor. If neither v nor its neighbor has the rumor, then
nothing is transferred.



2 Analysis of push-pull algorithm

Theorem 1. In graph G(V,E) with n vertices and conductance φ, the push-pull algorithm completes
the task in O( lognφ ) rounds whp.

Definition 1. We recall the definition of conductance φ in a graph G(V,E).

φ = min
∅6=S(V

|E(S, S̄)|
min{Vol(S),Vol(S̄)}

where Vol(S) =
∑

v∈S dv and E(S, S̄) is the set of edges of the graph that crosses the S, S̄ cut.

Before proving Theorem 1, we present two lemmas which help us to complete the proof of the
theorem.

Lemma 1. Suppose in a graph G(V,E), the maximum degree vertex is in the set of informed nodes
S. Then, in O( lognφ ) rounds of pull algorithm, S = V whp.

Lemma 2. In O( lognφ ) rounds of push algorithm, max degree vertex is informed and is in S whp.

Remark 1. By high probability we mean probability of at least 1− 1
nβ

for some β > 0.

Proof of Theorem 1: Lemma 1 and 2 yield the proof of Theorem 1.

We now argue that Lemma 1 and 2 are, in fact, equivalent and proving one of the lemmas implies
the correctness of the other one. In other word, lemma 1 =⇒ lemma 2 and lemma 2 =⇒ lemma
1. In the following, we establish this claim.

Let Epush(u, v, t) be the event that if node u is informed at time 0, then in at most t rounds of push,
v is informed, and Epop(v, u, t) be the event that if node v is informed at time 0, then in at most t
rounds of pull, u is informed.

In the following, we show that:

Pr[Epush(u, v, t)] = Pr[Epull(v, u, t)]

Consider that at each round (from round 1 to t), each node (independently from it has or it doesn’t
have the rumor), it picks on random edge or one random neighbor.

The space for such decisions Ω are points of the form x = (
∏
v dv)

t. Then, if x ∈ Epush(u, v, t), it
means there are some edges at each round that let rumor starts from u and reaches v in at most
t rounds. This exactly means that using that edges u can pull rumor from v during these rounds.
Thus x ∈ Epull(v, u, t).
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Then we have:
x ∈ Epush(u, v, t) ⇐⇒ x ∈ Epull(v, u, t)

This implies that
Pr[Epush(u, v, t)] = Pr[Epull(v, u, t)]

Having above argument, it suffices to prove only one of the above lemmas. Here we give a proof
for lemma 1.

The proof for lemma 1 relies on the following key claim on the pull protocol. For any integer t ≥ 0,
let St denote the set of informed nodes, and Ut the set of uninformed nodes at time t.

Lemma 3. In pull, consider two cases:

a. If ∆ ≤ Vol(S0) ≤ |E|, then after t = d 4φe rounds, we have the following:

Pr[Vol(St) > min(2Vol(S0, |E|))] ≥
1

2
.

b. If Vol(S0) > |E|, then after t = d 6φe rounds, we have the following:

Pr[Vol(Ut) <
Vol(U0)

2
] ≥ 1

2
.

Proof: We only prove part a. The second part has a similar argument. Assume that at round i,
Vol(Si−1) ≤ |E|, then from the definition of graph conductance, we have:

|E(Si−1, Ui−1)| ≥ φ ·Vol(Si−1)

≥ dφ ·Vol(S0)e

Let M = dφ ·Vol(S0)e, and let Ei be an arbitrary subset of |E(Si−1, Ui−1)| of size M . Then for any
node u in Ui−1, we define gi(u) be the number of edges u has in Ei, and we define random variable
Li(u) as following:

Li(u) =

{
1 if u pulls using an edge in Ei

0 otherwise

Then, we define random variable Li =
∑

u∈Ui−1
du · Li(u). Then, it is easy to see that:

Vol(Si) ≥ Vol(Si−1) + Li

Now, we want to see how the Vol(Si) grows from round to round. Assuming all random choices
until now are fixed, we want to find the expected value of Li, using linearity of expectation we
have:

E[Li] =
∑

u∈Ui−1

du · E[Li(u)]

=
∑

u∈Ui−1

du ·
gi(u)

du

=
∑

u∈Ui−1

gi(u) = M
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As we see at each round the size of S, set of informed nodes, grows by M in expectation.

Let’s define Li = L1 + L2 + ...+ Li, then using linearity of expectation, we get E[Li] = iM .

For t = Vol(S0)
M rounds, from |S0| we reach to St with size at least 2|S0| in exception, each round

increases by M . Since M is dφ · Vol(S0)e (from its definition), t ≈ Vol(S0)

φ·Vol(S0)
≈ 1

φ . Note that so far

we showed size of St ≥ 2S0, if its size increases by M at every round which is the expectation.

Now we use Chebyshev’s bound to show that for t = d 4φe, the probability that Vol(St) < 2Vol(S0)

is less than 1
2 .

Remark 2. (Chebyshev’s inequailiy) For random variable X, with expected value µ, we have
the following:

Pr[|X − µ| > δ] = Pr[(X − µ)2 > δ2] ≤ E[(X − µ)2]

δ2
=
V ar(X)

δ2

Note that Chebyshev’s inequality is just Markov’s inequality on second moment of X.

Before applying Chebyshev’s inequality, we need to figure out V ar(Li). We know Li =
∑

j≤i Lj .
Although Ljs are not independent, it can be proved that V ar(Li) =

∑
j≤i V ar(Lj) [1]. For V ar(Lj)

we have:

Var(Lj) = E[((
∑

u∈Uj−1

Lj(u) · du)−M)2]

= (
∑

u∈Uj−1

E[Lj(u)2 · d2u])−M2

≤
∑

u∈Uj−1

E[Lj(u) · d2u]

≤
∑

u∈Uj−1

∆ · E[Lj(u) · du] = ∆ ·M

Thus, it implies that V ar(Li) = i∆M .

For t = d 4φe, we have:

Pr[Vol(St) < 2Vol(S0)] = Pr[Vol(St)−Vol(S0) < Vol(S0)]

≤ Pr[Lt < Vol(S0)]

≤ Pr[|Lt −Vol(S0)| > tM −Vol(S0)]

≤ Pr[|Lt −Vol(S0)| > 3Vol(S0)]

(Apply Chebyshev’s inequality here)

≤ tM∆

9Vol(S0)2
=

4 · φ ·Vol(S0)∆

9 · φ ·Vol(S0)2

(From assumption in part a of lemma 3, Vol(S0) ≥ ∆)

≤ 4

9
.
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This completes the proof of lemma 3 part a.

Now we are ready to prove lemma 1.

Proof of Lemma 1: Using lemma 3, after each 4
φ rounds Vol(St) with at least half probability

becomes twice. The question is after how many rounds the volume of informed nodes becomes
greater than |E|. The expected number of rounds is log ( |E|

Vol(S0)
) · 4φ . But this is not enough, and

we need to bound the probability that it takes a longer time for volume of informed nodes to hit
|E|.

Here we abstract our problem with coin toss problem with same parameter. Assume that we have
a coin that comes head with probability at least 1

2 . How many times should we toss the coin to get
at least 2 log n heads. If we toss it 8 log n times, what is the following probability:

Pr[ # heads ≤ 2 log n] = ?

We define Xi be the random variable for the outcome of ith coin toss:

Xi =

{
1 if coin turns up head

0 otherwise

And we define X =
∑n

i=1Xi. Then we have µ = E[X] = 4 log n. Using standard Chernoff bound:

Pr[X ≤ 2 log n] ≤ e−
1
4

4 logn
2 =

1√
n

This implies that O(log ( |E|
Vol(S)

) · 4φ) = O( lognφ ) rounds suffices for Volume of S to hit |E| whp.

Using similar argument, O( lognφ ) rounds suffices for volume of U to get to 0 whp. This completes
the proof for lemma 1.
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