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• Different measures of graph expansion

• Random bipartite graphs expand

• Rumor spreading: Analysis for general graphs

1 Different measures of graph expansion

We formally state several notions of graph expansion.

• Spectral: For a regular graph, 1−λ2, where λ2 is the second largest eigenvalue of the random
walk matrix. Alternatively, the second smallest eigenvalue of the Laplacian.

• Vertex expansion: Let N(S) denote the set of nodes in V −S that have at least one neighbor
in S. The vertex expansion is defined as:

min
S:0<|S|≤|V |/2

|N(S)|
|S|

.

• Edge expansion: Let E(S, V − S) denote the set of edges with one endpoint in S and the
other endpoint in V − S. The edge expansion is defined as:

min
S:0<|S|≤|V |/2

|E(S, V − S)|
|S|

.

• Conductance: Let vol(S) denote the sum of the degrees of all the vertices in S. The conduc-
tance Φ is defined as:

min
∅6=S 6=V

|E(S, V − S)|
min{vol(S), volV − S}

.

A well-known result – Cheeger’s Inequality – relates conductance with the spectral grap.

Theorem 1. Cheeger For any d-regular graph, we have

Φ2

8
≤ 1− λ2 ≤ Φ.

2 Random bipartite graphs expand

Consider a random bipartite graph G = (L ∪ R,E), where L and R are two disjoint sets of n
vertices, and E is a collection of edges between L and R drawn as follows: each vertex in L selects
d vertices in R uniformly at random, and independent of choices of any other vertex in L. Clearly,
every vertex in L has exactly d incident edges. We ask the following question: how well does an
arbitrary set in L expand?



Theorem 2. With probability at least 1/2, every subset S of vertices in L with |S| ≤ n/d has at
least d|S|/4 neighbors in R.

Proof: Consider any set S of size s ≤ n/d vertices. The probability that it has fewer than ds/4
neighbors is at most (

n

ds/4

)((ds/4
d

)(
n
d

) )s

.

Simplifying, using the approximation
(ds/4

d

)
/
(
n
d

)
≈ (ds/4n)d, and using the inequality

(
a
b

)
≤ (ea/b)b

for a ≥ b > 0, we obtain the bound:(
4en

ds

)3ds/4

·
(
ds

4n

)ds

≤
(
eds

4n

)3ds/4

.

Since ds ≤ n, we obtain that the probability that there exists any set S of size at most n/d that
has fewer than d|S|/4 neighbors is at most∑

s≥1

e

4

3ds/4
≤ 1/2

for d ≥ 4.

3 Analysis of rumor spreading on general graphs

The paradigm of rumor spreading or gossiping is considered as a robust mechanism for spreading
information in a distributed network, or influence in a social network. Suppose we have an undi-
rected connected network G with n nodes. A node, say r, has a piece of information M that it
wants to broadcast to the entire network. Consider the following gossiping protocol.

In each step, each node that has a copy of M , sends a copy of M to a neighbor chosen uniformly at
random. Assume that all the nodes are sychronized in their steps. This is called the Push protocol.

Theorem 3. The Push protocol completes in O(n log n) steps with probability at least 1− 1/n for
any n-vertex graph.

Proof: Our proof follows the following steps.

(a) Suppose a node u has a copy of M and degree d. What is the expected number of steps, in
terms of d, before u sends a copy of M to a specific neighbor v?

The probability that u sends a copy of M to v in any given step is 1/d. Thus, the expected
number of steps it takes before u sends a copy of M to v equals:

1

d
+ 2 · 1

d
· d− 1

d
+ 3 · 1

d
·
(
d− 1

d

)2

+ . . .

∞∑
i=1

i · 1

d

(
d− 1

d

)i−1
.

Using elementary algebra/calculus, we simplify the above to obtain the expectation to be d.
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(b) Let P be a shortest path from u to v. We now show that the sum of the degrees of all the
nodes on P is at most 3n. We argue that a node x can be a neighbor of at most 3 nodes on
a shortest path. Note that this is sufficient to establish the desired claim.

Suppose otherwise; let x be a neighbor of distinct nodes u1, u2, u3, and u4. Without loss of
generality, assume that P first visits u1, then u2, then u3, and then u4. It follows that the
subpath of P from u1 to u4 has at least three edges. However, replacing this subpath by the
two-hop path u1 → x→ u4 contradicts the fact that P is a shortest path from u to v.

(c) Using parts (a) and (b), we now derive an upper bound, in terms of n, on the expected
number of steps it takes for an arbitrary node v to receive a copy of M .

By part (a) and linearity of expectation, the expected number of steps it takes for an arbitrary
node v to receive a copy of M is at most the sum of the degrees of the nodes along the shortest
path from r to v, which is at most 3n by part (b).

Unfortunately, part (c) does not give us a bound on the expected completion time, since it
only bounds the time taken for an arbitrary node v – not all nodes – to receive M .

(d) Let us revisit part (b). Again, suppose a node u has a copy of M and degree d. We find an
upper bound, in terms of d, on the number of steps it takes for a specific neighbor v of u to
receive a copy of M from u with probability at least 1− 1/n3.

Let t be the number of steps it takes for v to receive a copy of M from u with probability
at least 1 − 1/n3. The probability that v has not received a copy of M from u in t steps is
(1− 1/d)t. So t is the first step at which this probability is at most 1/n3; in other words

t ≤ ln(1/n3)/ ln(1− 1/d) ≤ 3d lnn,

where we use the inequality (1− 1/d)d ≤ 1/e for d ≥ 1.

(e) Using parts (b) and (d), we derive an upper bound, in terms of n, on the number of steps
it takes for an arbitrary node v to receive a copy of M with probability at least 1 − 1/n2.
We argue that the same bound yields an upper bound on the number of steps it takes for all
nodes to receive a copy of M with probability at least 1− 1/n.

Consider a shortest path from r to v. In at most 3dr lnn steps, where dr is the degree of r, the
message crosses the first hop (to, say node u) with probability at least 1− 1/n3. Conditioned
on the fact that M has reached u, in at most 3du lnn additional steps, where du is the degree
of u, the message crosses the second hop with probability at least 1 − 1/n3. Thus, in at
most 3(dr + du) lnn steps, M has reached u with probability at least 1− 2/n3 (using Boole’s
inequality)‘. Continuing with this argument and invoking part (b), we obtain that M reaches
an arbitrary node v in at most 3n log n steps with probability at least 1− n/n3 = 1− 1/n2.

The probability that M has failed to reach a specific node v in 3n log n steps is at most 1/n2.
Thus, the probability that there exists a node v that M has failed to reach in 3n log n steps
is at most 1/n (using Boole’s inequality).
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