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1 Mixing time and spectral gap

Last class we proved the following, where M is the random walk matrix for a d-regular graph.

Lemma 1. For any initial probability distribution π, we have

‖πMk − u‖ ≤ λ(G)k,

where

λ(G) = max
x⊥1

‖xM‖
‖x‖

.

We now take a closer look at λ(G). For a d-regular undirected graph M is symmetric. This implies
that it has n real eigenvalues and corresponding real eigenvectors. Note that u is an eigenvector with
eigenvalue 1. One can see that every other eigenvalue is less than 1; and in fact, every eigenvalue
of M has absolute value at most 1. (We establish both of these statements formally below.)

Let 1 = λ1 ≥ |λ2| ≥ . . . ≥ |λn| denote the n eigenvalues of M and let u = v1, v2, . . . , vn denote the
corresponding eigenvectors.

Lemma 2. For every probability distribution π, we have

‖πMk − u‖ ≤ λk2‖π − u‖.

Proof: We write π − u (which is orthogonal to u) as a linear combination of the eigenvectors
v2, . . . , vn:

π − u =
n∑

i=2

civi



We now derive the desired inequality as follows.

‖πMk − u‖ = ‖(π − u)Mk‖

= ‖
n∑

i=2

civiM
k‖

= ‖
n∑

i=2

ciλ
k
i vi‖

≤ |λ2|k‖
n∑

i=2

civi‖

= |λ2|k‖π − u‖

Another way to see it is to show λ(G) = |λ2|, whose proof is essentially embedded above. Take any
x ⊥ u. Then, it follows that x =

∑n
i=2 aivi for some coefficients a2, . . . , an. Then we have

‖xM‖2 = ‖
n∑

i=2

aiviM‖2

= ‖
n∑

i=2

aiλivi‖2

≤ |λ2|2‖
n∑

i=2

aivi‖2

= |λ2|2‖x‖.

We have thus established that λ(G) ≤ |λ2|. To see the other direction, take x = v2 and we obtain
that ‖xM‖/‖x‖ = |λ2|, thus showing that λ(G) ≥ |λ2|.

2 Lower bound on spectral gap

Recall that we showed in the first lecture that the time it takes for the random walk to converge to
the stationary distribution is inversely proportional to 1− λ(G) = 1− |λ2|, which is referred to the
spectral gap (i.e., the gap between the largest eigenvalue and second largest eigenvalue, in absolute
terms).

This brings us to the question: what is |λ2| for an arbitrary undirected graph G.

Lemma 3. All the eigenvalues of M are at most 1 and at least −1. Furthermore, −1 is an
eigenvalue for a connected graph if and only if the graph is bipartite.

Proof: By Courant-Fischer’s Theorem, the largest eigenvalue is given by

max
x 6=0

xTMx

xTx
= max

x 6=0,‖x‖=1
xTMx.
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For any unit vector x, we have

xTMx =
∑
i

(
∑

(i,j)∈E

xixj/d)

=
∑

(i,j)∈E

2xixj/d

=
∑

(i,j)∈E

(x2i + x2j − (xi − xj)2)/d

= 1− 1

d

∑
(i,j)∈E

(xi − xj)2

≤ 1.

Similarly, for any unit vector x, we have

xTMx =
∑
i

(
∑

(i,j)∈E

xixj/d)

=
∑

(i,j)∈E

2xixj/d

=
∑

(i,j)∈E

((xi + xj)
2 − x2i − x2j )/d

= −1 +
1

d

∑
(i,j)∈E

(xi + xj)
2/d

≥ −1.

Furthermore, note the equality in the preceding step happens only if for every edge (i, j), xi = −xj .
This implies that the vertex set of the graph can be partitioned into two subsets — {i : xi > 0} and
{j : xj < 0} — such every edge is from one subset to the other; hence the graph is bipartite.

By Courant-Fischer, the smallest eigenvalue is given by

min
x 6=0

xTMx

xTx
= 1−max

x 6=0

xTLx

dxTx
= 1−max

x 6=0

∑
(i,j)∈E(xi − xj)2∑

i x
2
i

≥ 1−max
x6=0

∑
(i,j)∈E 2(x2i + x2j )

d
∑

i x
2
i

= −1.

Lemma 4. If G is connected and nonbipartite, then |λ2| is at most 1− 1/(4dn3).

Proof: Our proof is in two parts: first we show that the second largest eigenvalue is at most
1− 1/(4dn3). Second, we argue that the smallest eigenvalue is at least −1 + 1/(4dn3).

We have shown above that for a unit vector x, we have

xTMx = 1− 1

d

∑
(i,j)∈E

(xi − xj)2.

Consider the second largest eigenvalue, which equals

max
x⊥1,‖x‖=1

xTMx = 1− min
x⊥1,‖x‖=1

1

d

∑
(i,j)∈E

(xi − xj)2.
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Sort the xi values in nondecreasing order x1 ≤ x2 ≤ . . . ≤ xn. Since ‖x‖ = 1 and
∑

i xi = 0, it
follows that x1 ≤ 0 ≤ xn and |x1 − xn| ≥ 1/

√
n. Therefore, there exists at least one i such that

|xi−xi−1| ≥ 1/n3/2. Since the graph is connected, there exists an edge (i, j) with |xi−xj | ≥ 1/n3/2,
which implies that the second largest eigenvalue is at most 1− 1/(dn3).

Using a similar argument, we can show that the smallest eigenvalue is at least −1 + 1/(4dn3) if the
graph is nonbipartite and connected. We leave this as an exercise.

3 Normalized random walk and Laplacian matrices

Thus far, we have focused on d-regular graphs. The associated random walk matrix in that case
is symmetric and we can draw results from the spectral decomposition of such graphs to obtain
bounds on the rate of convergence. What can be done in the more general setting of nonregular
undirected graphs?

For a nonregular undirected graph, the adjacency matrix is still symmetric; however, the random
walk matrix M , where Mij equals 1/d(i) with d(i) being the degree of i, is not. Note that M =
AD−1. Define the normalized random walk matrix N = D−1/2MD1/2, where D is the diagonal
matrix with the ith diagonal entry being d(i). We thus have

N = D−1/2AD−1/2,

which is a symmetric matrix.

Lemma 5. The matrices M and N have the same eigenvalues and closely related eigenvectors.

Proof: Let v be an eigenvector of N , with eigenvalue λ. Then, we have

D−1/2MD1/2v = Nv = λv.

Multiplying both sides by D1/2 we obtain

MD1/2v = λD1/2v.

Thus D1/2v is an eigenvector of M with eigenvalue λ.

4 Random walks in nonregular undirected graphs

What is the stationary distribution of a random walk in an arbitrary undirected graph? It is easy
to verify that the stationary distribution is given by π:

π(v) =
d(v)∑

u∈V d(u)
=
d(v)

2m
,

where m is the number of edges. We now study the convergence rate of a random walk to the
stationary distribution.
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Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| denote the eigenvalues of the normalized walk matrix N with corre-
sponding eigenvectors v1, . . . , vn. Consider probability vector pt of the random walk at time t, with
p0 being the initial vector. Since N =

∑
k λkv

T
k vk, we obtain

M t = (D1/2ND−1/2)t = D1/2N tD−1/2 =

n∑
k=1

λtkD
1/2vTk vkD

−1/2 = π +

n∑
k=2

λtkD
1/2vTk vkD

−1/2.

Suppose we start the random walk from vertex i, then p0 has its ith component as 1 and the others
being zero. Then, we obtain

pt(j) = π(j) +

n∑
k=2

λtkvk(i)vk(j)

√
d(j)

d(i)
.

We now can bound pt(j) as follows.

|pt(j)− π(j)| =

∣∣∣∣∣
n∑

k=2

λtkvk(i)vk(j)

√
d(j)

d(i)

∣∣∣∣∣
≤ |λ2|t

∣∣∣∣∣
n∑

k=2

vk(i)vk(j)

√
d(j)

d(i)

∣∣∣∣∣
≤ |λ2|t

√
d(j)

d(i)
.

In the last step, we use the fact that
∑n

k=2 vk(i)vk(j) ≤ 1. This follows from the fact that the
matrix Q formed by the eigenvectors v1, . . . , vn is orthonomal – so QTQ = I – so every row and
column is a unit vector.
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