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1 Introduction to random walks

Let G be a d-regular directed graph (which is any directed graph in which the in-degree and out-
degree of every vertex is d). Let A denote its adjacency matrix, with Aij = 1 whenever there is an
edge from i to j. A random walk on G is a process that starts at time 0 at an arbitrary vertex and
proceeds as follows: if the walk is at vertex i at time t, then it is at vertex j at time t+ 1 where j
is chosen uniformly at random from all the out-neighbors of i. We can capture the random walk
by the matrix M = A/d, which we call the random walk matrix.

A vector x is referred to as a probability vector is
∑

i x(i) = 1. The location of the walk at time
t can be given by the probability vector pt = p0M

t, where p0 is the unit vector with p0(i) = 1 if
the walk starts at i and 0 otherwise. We say that x is a stationary distribution if xM = x. Some
immediate questions are:

• Do stationary distributions always exist? It is immediate that u = (1/n, . . . , 1/n) is a station-
ary distribution of a random walk for every d-regular graph. More generally, finite Markov
chain has a stationary distribution.

• Is the stationary distribution unique? In general, any finite irreducible ergodic Markov chain
has a unique stationary distribution.

• Does a random walk always converge to a stationary distribution? If it does, how long does
it take?

We now study the convergence of a random walk on G to the stationary distribution u. Let λ(G)
be defined as follows:

λ(G) = max
x⊥u

‖xM‖
‖x‖

.

Lemma 1. For any initial probability distribution π, we have

‖πMk − u‖ ≤ λ(G)k.

Proof: Since ‖xM‖ ≤ λ(G)‖x‖ for any x ⊥ u, it follows that ‖(π − u)M‖ ≤ λ(G)‖π − u‖. Since
(π−u)M t ⊥ u for all t, it follows that ‖(π−u)M t‖ ≤ λ(G)t‖π−u‖. But uM t = u and ‖π−u‖ ≤ 1,
yielding the desired claim.



From the above lemma, it is clear that a random walk will converge to the stationary distribution if
λ(G) < 1; smaller the value of λ(G), the faster it will converge. In particular, in ln(n/ε)/(1−λ(G))
steps, every entry of πMk will be at least (1− ε)/n. Is there a good upper bound on λ(G) be? We
will see that for undirected nonbipartite graphs λ(G) ≤ 1−Ω(1/n3), which implies that a random
walk on nonbipartite graphs converges to the uniform distribution in a polynomial number of steps.

We will later show that λ(G) is the same as the second largest eigenvalue of M (in magnitude),
which will then allow us to prove the polynomial convergence bound stated above.

2 Bounds on the hitting time and cover time of random walks

In addition to the convergence rate of random walks, measures of interest include hitting time,
the expected time that it takes for the random walk to visit a particular vertex and cover time,
the expected time it takes to visit every vertex in the graph. In this section, we establish worst-
case bounds on the hitting time and cover time of random walks. Our analysis approach will be
combinatorial and different than the algebraic method presented in the previous section.

Let H(u, v) denote the expected time it takes for a random walk starting from u to first hit v. So
H(u, u) denotes the expected time it takes for a random walk starting from u to return to u for the
first time. Suppose Xi denote the number of steps between the ith visit and the (i + 1)st visit to
u of the walk. Then, H(u, u) is simply the limit, as s tends to infinity of (X1 +X2 + . . .+Xs)/s.
(Note that both the mean and variance of Xi can be shown to be finite.) But as s tends to infinity,
s/(X1 + X2 + . . . + Xs) is simply the fraction of time the walk is at s, which equals the visit
probability in the stationary distribution. So we have:

π(v) =
d(v)

2m
=

1

H(v, v)
.

We thus know that H(v, v) = 2m/d(v).

Hitting time. Define the hitting time of a graph to be the maximum, over all vertices u and v in
G, of H(u, v). Consider the time taken for a random walk starting from vertex u to hit a vertex
v. To obtain a bound on the expectation of this time, H(u, v), we consider a shortest path from
u to v given by u = v0, v1, v2, . . . , vk = v, for some k. We place an upper bound on H(vi, vi+1) as
follows.

H(vi, vi+1) = 1/d(vi) + (1− 1/d(vi))
(
H̃(vi, vi) +H(vi, vi+1)

)
,

where H̃(vi, vi) is the expected time it takes for the walk starting from vi to return to vi to the first
time under the condition that the first step is not to vi+1. The above equation can be simplified to

H(vi, vi+1) = 1 + (d(vi)− 1)H̃(vi, vi).

We have a bound for H(vi, vi) = 2m/d(vi). What about H̃(vi, vi)? We have:

H(vi, vi) ≥ (1− 1/d(vi))H̃(vi, vi).

We thus obtain

H(vi, vi+1) ≤ 1 + d(vi)H(vi, vi)
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Adding over all i, we obtain
H(u, v) ≤ k + 2mk ≤ (2m+ 1)n.

We can get a better upper bound for regular graphs, for which we have H(vi, vi) = n. So plugging
this in Equation 1, and adding over all i in the shortest path, we obtain

H(u, v) ≤ k + n

k−1∑
i=0

d(vi).

The following lemma, left as an exercise, is now handy.

Lemma 2. Let u and v be two vertices in any undirected graph G. Then, the sum of the degrees
of the vertices along any shortest path between u and v in G is at most 3n.

This yields us H(u, v) ≤ 3n2 + n.

Theorem 1. The hitting time of any n-vertex, m-edge undirected graph is at most (2m+ 1)n. The
hitting time of n-vertex regular graph is at most 3n2 + n.

The above bound for hitting time for nonregular graphs is a bit weak. In fact, we can establish a
slightly better bound for covering the entire graph.

Cover time. The cover time of a graph is the maximum, over every start vertex u, of the expected
time taken for a random walk starting from u to visit every vertex of the graph. Above, we
showed using the stationary distribution π that H(v, v) = 2m/d(v). Note that π(v)/d(v) = 1/2m.
Therefore, the probability that the walk is going from vertex u to v in stationary distribution is
1/(2m) for any edge (u, v). From this, we can calculate the expected number of steps for the walk
to traverse the edge from v to u, if it is presently traversing the edge from u to v. It is simply
H(v, v)d(v) = 2m.

We now place an upper bound on the cover time by simply adding the above traversal time bound
over the Eulerian walk edges of a spanning tree to obtain a cover time bound of at most 2m(n−1).

Theorem 2. The cover time for any undirected graph with n vertices and m edges is at most
2m(n− 1).
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