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• Spectral Sparsifiers

1 Spectral Sparsifiers

We are given a graph G = (V,E) and want to create a graph H = (V,E′)
with weights we such that

• The number of edges with non-zero weight are small (near linear)

• ∀x ∈ Rn where |V | = n we have

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

where L = D −A is the Laplacian and LH =
∑

e=(i,j)we(xi − xj)2.

We will use the same recipe for sampling edges from G to create H except
take pe proportional to the effective resistance. If we view the graph as an
electrical network with edges having resistance equal to their weight (1 in
an unweighted graph), then the effective resistance of an edge (u, v) is the
resistance of that edge if 1 A of current enters u and exits v. Before we
formally define effective resistance, let us give some notation and state some
basic results.

Let eu for the unit vector for u ∈ V . That is, eu has a 1 in the u-th
coordinate and 0 elsewhere. Then, define

χe := eu − ev

where e = (u, v). Let the incidence matrix χ be the n × m matrix with
columns χe for all e ∈ E. Note that the Laplacian LG = χχT =

∑
e∈E χeχ

T
e .

Furthermore, LH =
∑

e∈E weχeχ
T
e .

Kirchoff’s law: Let cext be the external current coming into the graph.
This can be found by adding all currents in and subtracting all currents
going out. Then, we have

χ · i = cext



where i is the m× 1 current vector.

Ohm’s law: Let v be the n× 1 voltage vector. We then have the following
relation: va − vb = ia→b, the current from a to b. More generally,

χT v = i

Note that since the all edges are 1 Ω resistors, the effective resistance is the
potential difference between the two nodes of the edge.

We can combine Ohm and Kirchoff’s laws to get the following

LGv = χχT v = cext

To calculate the effective resistance of the edge (x, y), set cext = ex − ey.
This implies that LGv = ex − ey. Solve for v to get

v = L−1
G (ex − ey)

Since the effective resistance Reff = vx − vy, we can sample with each edge
with probability p(x,y) = Reff to get

p(x,y) = vx − vy = (ex − ey)T · v

Expanding out the v, we arrive at the following form.

p(x,y) = (ex − ey)TL−1
G (ex − ey)

However, there is a serious problem with what we have just done. LG is
singular and therefore not invertible. This can be shown by verifying that
0 is an eigenvalue of LG.

We can fix this issue by using the pseudoinverse of LG. Let M be a real,
symmetric matrix. By the spectral theorem,

M =

n∑
i=1

λiviv
T
i

where the vi are normalized eigenvectors. Define the pseudoinverse M+ to
be

M+ =
∑
λi 6=0

1

λi
viv

T
i
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Therefore, we have that for an edge e

pe = χTe L
−1
G χe

where we take L−1
G to be L+

G. This also gives us a well defined matrix L
−1/2
G

implying

pe = χTe L
−1/2
G L

−1/2
G χe

= (L
−1/2
G χe)

T · (L−1/2
G χe)

Define xe = L
−1/2
G χe. Finally, we have the effective resistance of e as

pe = xTe xe

Suppose each edge e is selected with probability pe. This implies that

E[# edges selected] =
∑
e

pe =
∑
e

xTe xe

We can analyze xTe xe by looking at the following matrix of outer products,
and taking its trace.∑

e

xex
T
e =

∑
L
−1/2
G · χe · χTe · L

−1/2
G

= L
−1/2
G (

∑
e

χeχ
T
e )L

−1/2
G

= L
−1/2
G · LG · L−1/2

G

= I

This is not entirely accurate, however. Remember that we are using the
pseudoinverse of LG. Let’s continue and see where it doesn’t work. Let us
expand out the sum

∑
e xex

T
e =

x11 x11 . . . x1n
...
x1n

= x1x
T
1 =

x
2
11

. . .

x2
1n


+ +
...

...

+ +

xn1 xn1 . . . xnn
...
xnn

= xnx
T
n =

x
2
n1

. . .

x2
nn
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This implies that

∑
e

pe = Tr

(∑
e

xex
T
e

)
= n− 1

where the −1 appears because we used the pseudoinverse. The number of
non-zero eigenvalues is n− 1 assuming a connected graph.

Random Sampling Algorithm:

ρ← c·lnn
ε2

∀e : we ← 0
∀e : pe ← xTe xe;xe = L

−1/2
G χe

for j ← 1, . . . , ρ do
for e do

Zj,e :=

{
1 w.p. pe
0 otherwise

end for
for e do
we ← we +

Zj,e

ρpe
end for

end for

The largest for-loop runs ρ times in order to boost the probability that the
graph is connected. Note that the expected weight of e

E[we] =
∑
j

E[Zj,e]

ρ · pe
=
∑
j

pe
ρ · pe

= 1

since j ranges from 1 to ρ.

Theorem 1. For the graph H generated from G by the above sampling
algorithm,

(a) The expected number of nonzero-weight edges is O
(
n lnn
ε2

)
.

(b) For all x ∈ Rn,

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx
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Proof. (a) The expected number of non-zero weight edges ≤
∑

e

∑
j E[Zj,e]

because of double counting. Then, we see that that∑
e

∑
j

E[Zj,e] = ρ ·
∑
e

pe = ρ(n− 1)

(b) Note that LH =
∑

eweχeχ
T
e . Then, we can restate (b) as

(1− ε)LG � LH � (1 + ε)LG

(1− ε)LG �
∑

eweχeχ
T
e � (1 + ε)LG

(1− ε)L−1/2
G LGL

−1/2
G︸ ︷︷ ︸

I

�
∑

ewe (L
−1/2
G χe)︸ ︷︷ ︸
xe

(χTe L
−1/2
G )︸ ︷︷ ︸

xTe

� (1 + ε)L
−1/2
G LGL

−1/2
G︸ ︷︷ ︸

I

where the last line follows from the next claim. Note that statements of
the form (1− ε)I � A mean that for all x we have xTAx ≥ 1− ε.

Claim 1.
M � N ⇔ CTMC � CTNC

where C is a nonsingular symmetric matrix.

The claim is not true for general C but it works in the case C = L
−1/2
G .

So, we now have that (b) is equivalent to

(1− ε)I �
∑
e

wexex
T
e � (1 + ε)I

This is identical to the statement that all eigenvalues of L
−1/2
G LHL

−1/2
G

are between (1 − ε) and (1 + ε). Thus, it is sufficient to prove the
following.

Claim 2. The eigenvalues of M :=
∑

ewexex
T
e are in [1−ε, 1+ε] where

xe = L
1/2
G χe.
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Proof. Recall that we =
∑

j
Zj,e

ρ·pe . Then, we have that

M =
∑
e

∑
j

Zj,e
ρ · pe

xex
T
e

=
∑
e

∑
j

Zj,e
ρ

(
xex

T
e

xTe xe

)

E[M ] =
∑
e

∑
j

E[Zj,e]

ρ

(
xex

T
e

xTe xe

)
=

∑
e

xex
T
e = I

Now, we need a matrix version of the Chernoff bounds to show that the
eigenvalues are outside our goal with low probability. The matrix Cher-
noff bounds are due to Tropp. Consider m n × n matrices X1, . . . , Xm

such that 0 � Xi � R · I. Let X =
∑

iXi. For

µminI � E[X] � µmaxI

we have the following bounds.

Pr[λmax(X) ≥ µmax(1 + ε)] ≤ exp(−ε
2µmax

3R ), 0 ≤ ε < 1

Pr[λmin(X) ≤ µmin(1− ε)] ≤ exp(−ε
2µmin
2R ), 0 < ε < 1

We can bound the eigenvalues of M by taking X =
∑

j
Zj,e

ρ

(
xexTe
xTe xe

)
for

R = 1/ρ. This gives us a bound of exp(−ε
2ρ

3 ) = 1
nc/3 since ρ = c lnn

ε2
.
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