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• Finish Cut Sparsifiers

• Spectral Sparsifiers

1 Cut Sparsifiers

Last time, we gave a method to probabilistically create a cut sparsifier H of a given graph G =
(V,E). More specifically, H has the same vertex set V and each edge e ∈ E is sampled with
probability pe. We take pe ∝ 1

λe
where λe is the connectivity of e (i.e. the size of the smallest cut

containing e). Specifically,

pe =
c ln2 n

ε2λe

If e is sampled, it is given weight 1/pe in H. Last time we showed that the expected number of

edges in H is O
(
n ln2 n
ε2

)
where n is the number of vertices. Today, we will prove the following

lemma.

Lemma 1. For all cuts S ⊆ V , we have that w(H(S, S̄)) = (1± ε)G(S, S̄) with high probability.

w is the weight of the cut, i.e. the sum of weights of edges across the cut.

Proof. Let ∆ be the size of the cut (S, S̄).

Briefly recall the proof from last lecture for the graph generated for constant pe = p. In that
case, we had that

E(H(S, S̄)) = p ·∆
We then applied Chernoff bounds to obtain that

Pr[|H(S, S̄)| ≤ (1± ε)p∆] = e
−ε2p∆

3
c ln2 n
ε2∆∗

= e−
∆

∆∗ ln2 n

In this case, we cannot follow the same proof since the probabilities are different for each edge. We
will get around this issue by looking at families of edges with probabilities bounded in some range.
Define

Ri := {e ∈ (S, S̄) : 2i ≤ λe ≤ 2i+1}
Note that

|Ri| ·
c ln2 n

ε22i+1
≤ E[# of edges in Ri selected] ≤ |Ri| ·

c ln2 n

ε22i

We can apply Chernoff bounds on each family Ri, and take a union bound over all families. For
e ∈ Ri define Xe = 1/pe, the weight of e. Define X =

∑
e∈Ri Xe. Then, we have that

E[X] = |Ri|



We can see from this that in expectation, the weight of the cut in H is equal to the weight of the
cut in G. To observe the behavior of the tail distribution of the cut, we proceed with a Chernoff
bound on Ri. However, we need a modified Chernoff bound since the Xe are not Bernoulli random
variables.

Chernoff bound:

For 0 ≤ Xi ≤ R, and µ = E[X] where X =
∑
Xi

Pr[X ≤ (1 + ζ)µ] ≤ exp
(
−ζ2µ

3R

)
, ζ < 1

≤ exp
(
−ζµ
3R

)
, ζ ≥ 1

Pr[X ≥ (1− ζ)µ] ≤ exp
(
−ζµ
2R

)
, 0 ≤ ζ ≤ 1

Applying this to our situation, we obtain

Pr[X ≥ (1 + ε)|Ri|] ≤ exp

(
−ε2|Ri|

3 · 2i+1ε2
· c ln2 n

)
where the value of R in the Chernoff formula is

R =
2i+1ε2

c ln2 n

Choose ζ such that (1 + ζ)|Ri| = |Ri|+ ε∆
logn . Then, we have that

Pr[X ≥ |Ri|+
ε∆

log n
] ≤ exp

(
−|Ri|c ln2 n

3 · 2i+1 · ε2
ε∆

log n|Ri|

)
= exp

(
−Ω

(
lnn ·∆

2i

))
= n−Ω(∆/2i)

Let us take stock of the situation at this point. We have a fixed cut (S, S̄) and a tail bound for the
weight of edges selected from each family Ri. We want to generalize the tail bound for all edges
selected from (S, S̄). Take the union bound over all the Ri families to get the tail bound for all
edges. To do this, we need to show that there aren’t too many Ri families that comprise of the cut
(S, S̄). The following lemma (due to Fung et al) will give us that the number of possibilities for
(S,Ri) where |G(S)| ≤ α · 2j is ≤ n2α.

Cut Projection Lemma: ∀α ≥ 1 we have that

|{δ(U) ∩B : |δ(U)| ≤ α ·min
e∈B

λe where U ⊆ V,B ⊆ E}| ≤ n2α

where δ(U) = cut(U, Ū).

In application of this lemma, B corresponds to the family of edges Ri and U corresponds to
the cut S. Since |G(S)| ≤ α · 2j , the union bound gives us

n−Ω(2j/2i) · n2· 2
i

2j ≤ 1

n4
,

where we set the constant c hidden in the Ω-notation to be sufficiently large.
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2 Spectral Sparsifiers

First, let us state an equivalent definition for the cut sparsifier requirement. For all cuts S,∑
e∈(S,S̄)

we ∈ (1± ε)|δ(S)|

where we is the weight of e in H. Building on this, here is another equivalent definition. For all
cuts S, define the vector x such that for all vertices u ∈ V

xu =

{
1 if u ∈ S
−1 if u ∈ S̄

Then, the cut sparsifier requirement is that∑
e∈E

we(xu − xv)2 ∈ (1± ε)
∑
e∈E

(xu − xv)2

where e = (u, v). Note that the sum
∑

e∈E(xu − xv)2 can be represented (after suppressing a 1/4
factor) as ∑

e∈E
(xu − xv)2 = xTLGx

where LG = D − A is the Laplacian of G. We can represent the Laplacian through the following
notation. Let ei denote the unit vector with 1 in the i-th coordinate. Let χe = eu − ev where
e = (u, v). Then, we have that

LG =
∑
e∈G

χeχ
T
e

Then, the cut sparsification requirement is equivalent to the following. For all x ∈ {−1, 1}n

(1− ε)xTLHx ≤ xTLGx ≤ (1 + ε)xTLHx

For spectral sparsifiers, the above condition is required for all x ∈ Rn.

Notation: For matrices M,N , we write

M � N ⇐⇒ ∀x : xTMx ≤ xTNx

Note that M � N is equivalent to saying that N −M � 0, or that N −M is positive semi-definite.

In order to build spectral sparsifiers, we will take pe ∝ Re, the effective resistance of e. We
will review resistance and other relevant concepts in the next lecture.
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