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• Epidemic Die-out in SIS model

1 Lower Bound on the Epidemic Die-out in SIS
Model

• Along any edge infection rate β

• Healing and recovery rate 1

• Initial start state, how long before epidemic completely dies out(i.e.
no infected node)?

Let τ be the time takes for epidemic to die. Now the question we are
interested in is: What is E(τ), as a function of β and G?

Theorem 1. If β < 1
λ1(A)

, then E(τ) = O(log n).

We proved this theorem in the previous lecture. Now we provide a condition
under which an epidemic will survive for a long time.

Edge expansion

Let

η = min
0<|S|≤n

2

E(S, S)

|S|

In the above, E(S, S) denotes the number of edges connecting the set of ver-
tices S to the complementary set, S. For d-regular graph, the edge expander:
η = Θ(1), d = Θ(1), λ1(A) = Θ(1)

Theorem 2. If

β >
1

η
, then E(τ) = Ω

((ηβ)
n
2

n

)
.



Proof: Let’s look at the set S of infected nodes. There are no less than
η|S| edges connecting S to S.

In time dt, we have the probability of infection through edges is βE(S, S)dt,
which is at least ηβ|S|dt. The expected number of healing nodes is |S|dt.

Let X(t) be the number of infected nodes at time t. X = |S|. X is a Markov
process starting from X(0) = 1 with transition rates:

X : X → X + 1 at rate βE(S, S)

X : X → X − 1 at rate X

Again, X is not easy to handle, we now define a Markov process Z such that
Z(0)=X(0) and transition rates:

Z : Z → Z + 1 at rate ηβZ (0 ≤ Z < n
2 ),

Z : Z → Z − 1 at rate Z

Then X stochastically dominates Z (i.e. Pr(X ≥ x) ≥ Pr(Z ≥ x) for all x)
since E(S, S) ≥ ηX ≥ ηZ.

Now we look at how Z changes. Z ∈ {0, 1, 2, . . . , n2 } is indeed a random walk
on a line.
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Focusing on an intermediate node k, we have

Pr(Z : k → k − 1) = 1
1+ηβ

Pr(Z : k → k + 1) = ηβ
1+ηβ

The random walk starts from Z=1. Let ηβ
1+ηβ = p, and 1

1+ηβ = q.

Let qi = Pr(walk Z starting from i hits n/2 before 0). Then we have q0 =

2



0, qn
2

= 1 and for i ∈ {1, 2, . . . , n2 − 1} we obtain

qi = q · qi−1 + p · qi+1

q · qi − q · qi−1 = p · qi+1 − pqi
q · (qi − qi−1) = p · (qi+1 − qi)

qi+1 − qi =
q

p
(qi − qi−1)

Suppose q1 = α and q
p = r, we have

q1 = α

q2 − q1 = rα

qi+1 − qi = riα

qi =
1− ri

1− r
· α

qn
2

=
1− r

n
2

1− r
· α = 1

Therefore,

qi =
1− ri

1− r
· 1− r

1− r
n
2

=
1− ri

1− r
n
2

Note. This is well-known as the Gambler’s Ruin problem.

Therefore,

q1 =
1− 1

ηβ

1−
(

1
ηβ

)n
2

,

qi =
1−

(
1
ηβ

)i
1−

(
1
ηβ

)n
2

.

We have

qn
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(

1
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(
1
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2

1−
(

1
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= 1− ηβ − 1

(ηβ)
n
2 − 1
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Note that if you have m Poisson events with rate 1, then the expected time
for the first event to occur is 1/m. Therefore, we have the expected time for
Z goes from n

2 to n
2 − 1 is 2

n . Moreover,

E(number of times walk hits
n

2
before hitting 0) ≥ (ηβ)

n
2
−1

Thus, E(τ) = Ω
(2(ηβ)n2 −1

n

)
.

Expansion and Spectral gap

When η ≥ d− λ2(A), we have if β ≥ 1
d−λ2(A) , then β ≥ 1

η .

Theorem 3. If

β >
c

λ1(A)− λ2(A)
(where c > 0 is a sufficiently large constant)

then E(τ) = Ω(exp(n)).
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