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• Small world properties

• Graph sparsifiers

1 Small world properties

Small world graphs are graphs with a small number of edges (linear in the
number of nodes), small max degree (constant), and logarithmic diameter
(the minimum achievable with the previous two constraints).

Consider the following problem: We have a grid graph G on n2 vertices that
we’d like to augment with additional edges. For each node, we want to add
a constant number of ”long range edges” such that the following holds for
the new graph G′:

• The diameter of G′ is O(log n).

• The simplistic navigation algorithm of going to your neighbor that is
closest in the grid topology to your destination results in paths that
are O(log n).

Consider the case where we take a grid graph, and each node gets 2 edges
to other nodes selected uniformly at random. This can be shown to reduce
the diameter to O(log n), but the resulting graph does not yield short paths
under the greedy routing algorithm.

Kleinberg [3] proposed an alternate distribution for adding edges. Let
dgrid(u, v) be the distance between nodes u and v in the grid topology. He
proposed that new edges be added according to the following distribution:

Pr[u→ v] ∝ 1

[dgrid(u, v)]k



1.1 Analysis on ring topology

We will not analyze this on the grid case. Rather, we will analyze a simpler
case, which is the ring topology when k = 1. For the remaining section,
d(u, v) will refer to the distance in the ring topology.
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Suppose we have two nodes s, t, and we want to know the expected distance
between s and t. Suppose the distance in the ring topology is ∆. We will
show that in expected O(log n) steps, we can get to distance ∆/2 from
t. Repeating this for ∆/4,∆/8, ... shows that we can get to t in expected
O(log2 n) time.

Let I be the set of all nodes that are distance ∆/2 from t. The probability
that s has a long range link to some node in I is 1

c

∑
v∈I

1
d(u,v) . Here c is the

normalization constant c =
∑

v∈V
1

d(u,v)

We can show that c ≥ log(n/2). Since d(s, v) ≤ 3∆/2, the probability above
is at least 1

c
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Hence the expected number of steps we take before we can get within the
interval I around t is 3 logN . Thus the expected number of total steps to
get to t is O(log2N).

2 Graph sparsifiers

A graph sparsifier for a graph G is a subgraph G′ which is close to G with
respect to a specific property. We will examine graph sparsifiers for cuts.

In an unweighted graph G, for any subset of vertices S, let G(S, S) denote
the number of edges across the cut determined by S. We would like to find
a sparse subgraph H, where we have added weights across the edges, such
that the weighted cut H(S, S) is close to the unweighted cut G(S, S).

2.1 Cut sparsifiers where ∆∗ is large

Consider the following simple cut sparsifier, motivated by [1] which works
by random sampling:

• For a fixed probability p, pick each edge e with probability pe = p.

• Assign each selected edge a weight of 1/p.

Theorem 1. Generate H such that for each edge e ∈ E, e is in H with
probability p = c logn

∆∗ε2 . The expected size of the sparsifier is Ω(m logn
∆∗ ), where

m is the number of edges, n is the number of vertices, and ∆∗ >> log n
is the size of the min cut in G. Further, with probability 1 − 1

nα for some
constant α, for all sets S, w(H(S, S)) ∈ (1± ε)G(S, S).

Proof. For any cut of size ∆ in G, we have E[|H(S, S)|] = p∆, so then
the expected weight of the cut is ∆. Since each edge being selected is
an independent event, the probability that the number of edges in the cut
signifiantly deviates from the expectation can be bounded:

Pr[|H(S, S)| 6∈ (1± ε)p∆] ≤ 2exp(−ε2p∆/3)

If we use p = c logn
∆∗ε2 , where ∆∗ is the size of the min cut in the graph. This

yields the above bound as:
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Pr[|H(S, S)| 6∈ (1± ε)p∆] ≤ 2exp(−ε2c log n∆/(3ε2∆∗)

≤ 2n−c/3

However, we cannot trivially apply a union bound to this, as there are 2n−1

possible cuts. Instead, will make use of the following lemma:

Lemma 1. In any graph G of n vertices, |the number of cuts of size ≤
α ·min-cut| ≤ n2α

Proof. We will show the case where α = 1, the argument generalizes to
larger α.

Consider the following randomized algorithm, which generates a cut:

• Randomly select an edge

• Contract the edge so the two nodes joined by it become one node

• Remove all self loops

• Repeat until two nodes are left, return the parallel edges between the
two vertices as the edges across the cut

We wish to calculate the probability that this achieves some particiular min
cut of size ∆∗. The probability that an edge of the min cut is selected in
the first round is ∆∗/|E|, so the probability that the min cut ”survives” the

first round is
(

1− ∆∗

|E|

)
.

However, since the average degree is at least 2|E|/n, and the average degree
is an upper bound on the min cut (since we could always take the cut to only
isolate that vertex), we have ∆∗ ≤ 2|E|/n, or |E| ≥ ∆∗n/2, hence ∆∗/|E| ≤
2/n, and the probability the cut survives the first round is ≥ (1− 2/n).

After we contract an edge (u, v), any unaffected cut has exactly the same
size in the contracted graph, so we can apply the same bound regarding the
min degree.

This argument generalizes to show that the probability the min cut survives

round i is at least
(

1− 2
n−i+1

)
, so the probability it survives all n−2 rounds

is at least:
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2
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We have that the event a specific cut survives all the rounds is mutually
exclusive from all other cut survival events. Thus we cannot have more
than

(
n
2

)
distinct min cuts, or the sum of the probabilities of picking each of

them would exceed 1, which isn’t possible.

This argument extends to arbitrary α by replacing ∆∗ with α∆∗

Recall that we simplified our above analysis by saying ∆/∆∗ ≥ 1. However,
given a particular value of ∆, we now have a bound on how many cuts can
achieve that value. We will split all possible cuts into different ranges, bound
the sizes of the ranges, and apply the unsimplified bound across the union
of the events.

Consider the set of all cuts Ci satisfying 2i−1∆∗ ≤ ∆ < 2i∆∗. We have from
our lemma that |Ci| ≤ n2i+1

. Such a cut is not preserved by our sampling
with probability

≤ 2exp(−ε2c log n∆/(3ε2∆∗) ≤ 2n−2ic/3

.

Applying a union bound over all cuts in Ci yields that the probability at
least one is bad is at most

2n−2ic/3+2i+1
= 2n−2i(c/3−2)

There are at most log n such groups, and each probability is decreasing,
so we can bound the probability that any one of the groups has a single
deviation as:
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≤ 2 log nn−(c/3−2)

as long as c is chosen to be sufficiently large, this is an inverse polynomial
in n, which goes to 0 for large n.

All that remains to analyze is the number of edges selected, which in ex-
pectation is cm log n/∆∗. If ∆∗ is sufficiently large (by definition it must be
> c log n) then we are removing a large fraction of the edges. However if ∆∗

is small then this is not a good sparsifier.

2.2 Cut sparsifier with varying pe

We will see that we can improve it by varying the probabilities pe in terms
of the edge e, first done in [2]. Define λe as the size of the smallest cut
containing edge e. Then we will select an edge with probability pe ∝ 1/λe.
Specifically, we will use pe = min{1, d lnn

ε2λe
} , where d is a constant to be set

during the analysis, and ε is the approximation factor we wish to achieve.

Theorem 2. The expected size of the sparsifier with the above probabilities

is O
(
n ln2 n
ε2

)
. Further, with high probability, for all sets S, w(H(S, S)) ∈

(1± ε)G(S, S).

We will not complete the proof here, but we will show a key lemma to be
used in the next lecture:

Lemma 2.
∑

e∈E
1
λe
≤ n

Proof. We wish to show the sum is no more than |V | − 1. Induct on the
number of vertices. When n ≤ 2, it’s true, since n = 1 yields the sum to be
0, and n = 2 yields the sum to be at most 1.

Suppose we have a graph of n vertices, take the min cut as described pre-
viously. Then the sum of the λe of these edges is exactly one. Suppose this
cut partitions G into sets A and B. Consider any edge e′ that is not across
this cut. Let λAe′ be the size of the smallest cut containing e′ when restricted
to the sub graph induced on A. We have that λAe′ ≤ λe′ , because the size of
any cut within A can only be increased by adding nodes and edges to the
graph. Inductively,

∑
e′∈A

1
λA
e′
≤ |A| − 1, and so

∑
e′∈A

1
λe′
≤ |A| − 1. We

can also apply this to B. Combining this with the original min cut yields:
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∑
e∈E

1

λe
≤ 1 + (|A| − 1) + (|B| − 1) = |V |+ 1− 2 = |V | − 1

as desired. A tight case is when G is the line graph, where there are n − 1
edges, and each edge has λe = 1.
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