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1 Lovasz-Simonovits Theorem for random walks

We will now study a combinatorial analysis of random walks, a beautiful theorem due to Lovasz-
Simonovits that analyzes the progress of a random walk in a more local, iterative manner. The
theorem has found applications in algorithms for estimating the volume of a convex body and for
local clustering of large graphs.

Consider an arbitrary undirected graph G. We analyze a lazy random walk on G: in each step,
the random walk stays at the current node with probability 1/2, and moves to a neighbor chosen
at random with probability 1/d, where d is the degree of the current node. Alternatively, we can
view the lazy random walk as the standard random walk on the directed graph Ĝ in which each
edge (u, v) in G is replaced by two directed edges (u, v) and (v, u), and we also add d(u) self-loops
at u, where d(u) is the degree of u in G. This is the graph we will work with in the remainder of
this lecture.

We will express the rate of convergence of the random walk (to the stationary distribution) in terms
of the conductance φ of G, which is defined as

φ = min
S⊂V

e(S, V − S)

min{e(S), e(V − S)}
,

where e(X,Y ) denotes the number of edges with one endpoint in X and the other in Y , and e(X)
denotes the number of edges with one endpoint in X.

Instead of considering the probability on vertices, we will consider the probability on edges. Let
pt(u) denote the probability that the random walk is at u at the start of step t, where we number of
steps from 0. For a directed edge e, let pt(e) denote the probability that the walk goes along edge
e in step t. For any edge (u, v), we have pt(u, v) = pt(u)/d(u). Note that in stationary distribution
pt(u, v) = 1/2m.

The Lovasz-Simonovits Theorem analyzes the progress of the random walk, not by directly bounding
the difference of the vector pt from the stationary distribution, instead by measuring changes to a
particular curve that captures the probability on the edges.

In any step, we will order the arcs such that pt(e1) ≥ pt(e2) . . . ≤ pt(eem). We define I : [0, 2m]→
[0, 1] as follows. For each integer k ∈ {0, . . . , 2m}, we define

It(k) =

k∑
i=1

pt(ei).

We extend the domain of It to the real interval [0, 2m] by linear interpolation.



Theorem 1. For any initial probability distribution and every t, we have

It(x) ≤ min(
√
x,
√

2m− x)

(
1− φ2

2

)t

+
x

2m
.

2 Proof of the L-S theorem

The proof will proceed in three parts. First we prove some facts about It. Second, we show how It
“decreases” over increasing time. Finally, we will derive the theorem.

2.1 Facts about It

Here are some easy observations on It.

• It(0) = 0, It(1) = 1, and It(x) is monotonically nondecreasing with x.

• Since all edges going out of a vertex have the same value of pt, we can assume that the edges
are ordered so that all of the outgoing edges of any vertex are in contiguous order.

• It is concave in x; that is, for any 0 ≤ x ≤ y ≤ 2m and any t, It((x+y)/2) ≥ (It(x)+It(y))/2.

• If It has reached stationarity, then It(x) = x/2m for all x.

Lemma 1. For all x and t, It(x) ≤ It−1(x).

Proof: Fix t and let pt(e1) ≥ pt(e2) ≥ . . . ≥ pt(e2m) denote the order of the edges. Let
ei = (ui, vi); note that uis (resp., vis) are not necessarily distinct for different i. We prove the
claim for all x = k, where {e1, . . . , ek} form the set of all edges that go out of the vertices in the
set W = {ui : 1 ≤ i ≤ k}. It is not too hard to extend the claim to all real x in the interval [0, 2m].

It(k) =

k∑
i=1

pt(ui, vi)

=
k∑

i=1

pt−1(vi, ui)

≤ It−1(k).

2.2 Change in It

Lemma 1 shows that the curve It is monotonically nonincreasing with t; so at the very least, we
are not moving away from stationarity. In order to place any bounds on the convergence time,
however, we need to see how fast does It get closer to the limit.
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Lemma 2. For x ∈ [0,m], we have

It(x) ≤ 1

2
(It−1(x− 2φx) + It−1(x+ 2φx)) .

For x ∈ [m, 2m], we have

It(x) ≤ 1

2
(It−1(x− 2φ(2m− x)) + It−1(x+ 2φ(2m− x))) .

Proof: Consider x ∈ [0,m]. We assume that x equals an integer k such that {e1, . . . , ek} is the
set of all outgoing edges from the vertex set S = {ui : 1 ≤ i ≤ k} where ei = (ui, vi). By the
definition of the random walk, we have

It(k) =
∑
i=1

kpt(ui, vi) =
∑
i=1

k − 1pt−1(vi, ui).

Let W denote the set {(vi, ui) : 1 ≤ i ≤ k}. We divide the set W into three groups.

W1 = {(vi, ui) : ui, vi ∈ S, ui 6= vi}
W2 = {(vi, ui) : ui ∈ S, vi /∈ S}
W3 = {(ui, ui) : ui ∈ S}

We now show the following two inequalities.∑
e∈W1

pt−1(e) ≤
1

2
It−1(k − 2|W2|) (1)

∑
e∈W2∪W3

pt−1(e) ≤
1

2
It−1(x+ 2|W2|) (2)

For a set X of edges, let pt(X) denote sum of pt(e) over all edges e ∈ X. Since all edges in W1

are non-loop outgoing edges for nodes in S, and there are as many self-loops at a node as edges
leaving the node, we obtain that pt−1(W1) is at most It−1(2|W1|)/2. Since |W3| ≥ |W1| + |W2|,
2|W1| ≤ k − 2|W2| yielding us Equation 1.

We now consider pt−1(W2 ∪W3). Since the number of self-loop edges at a node equals the number
of outgoing edges and all outgoing edges at a node carry the same mass, it follows that the mass
of edges in W3 is identical to the mass of edges in W1 and the edges that form the reverse of edges
in W2. Also, the mass of edges in W2 is at most the mass of a subset of the self-loops (whose total
size is |W2|) around the vertices that are at the tail of edges in W2. It follows that pt−1(W2 ∪W3)
is at most

1

2
It−1(|W3|+ |W1|+ |W2|+ |W2|+ |W2|) =

1

2
It−1(k + 2|W2|),

thus establishing Equation 2. Since |W2| ≥ φk (since k ≤ m), we obtain from the concavity of It−1
that

It(x) ≤ 1

2
(It−1(x− 2φx) + It−1(x+ 2φx)) .

We can extend the claim for all x ∈ [0,m] (not just the integers k of the type assumed above) and
also establish the desired claim for x ∈ [m, 2m] using a similar argument.
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2.3 Putting together a proof for L-S

Proof of Theorem 1: The proof of the main theorem now follows from Lemma 2 using an
induction argument. Define the function Rt as follows. Let R0(x) = min(

√
x,
√

2m− x) + x/2m.

Rt(x) =
1

2
(Rt−1(x− 2φx) +Rt−1(x+ 2φx)) for x ∈ [0,m]

Rt(x) =
1

2
(Rt−1(x− 2φ(2m− x)) +Rt−1(x+ 2φ(2m− x))) for x ∈ [m, 2m].

We first show using induction on t that It(x) ≤ Rt(x) for all t. The base case is immediate since
I0(x) ≤ 1 ≤ R0(x) for x ≥ 1 and I0(x) ≤ x ≤

√
x ≤ R0(x) for x ∈ [0, 1]. The induction step also

follows immediately from Lemma 2 and the definition of Rt(x).

We next show the following for all x, which will complete the proof of the theorem.

Rt(x) ≤ min{
√
x,
√

2m− x}
(

1− φ2

2

)t

+
x

2m
.

We only consider the case x ∈ [0,m]; the other case is similar. The induction base t = 0 is
immediate. For the induction step, we have

Rt(x) =
1

2
(Rt−1(x− 2φx) +Rt−1(x+ 2φx))

≤ 1

2

(√
x− 2φx

(
1− φ2

2

)t−1
+
√
x+ 2φx

(
1− φ2

2

)t−1)
+

x

2m

=
1

2

(
1− φ2

2

)t−1 (√
x− 2φx+

√
x+ 2φx

)
+

x

2m
.

≤ 1

2

(
1− φ2

2

)t−1√
x(1− φ− φ2

2
+ 1 + φ− φ2

2
) +

x

2m
.

=
√
x

(
1− φ2

2

)t

+
x

2m
.

Note that one can show convergence to the stationary distribution using the
above Theorem, in terms of the conductance of the graph. The bound we get above is related to
the one we would obtain if we use the bound on the second smallest eigenvalue of the Laplacian,
as obtained from the version of Cheeger’s inequality we derived in class. In fact, there is a version
of Cheeger’s inequality hidden in the above proof that relates the spectral gap to the conductance
of the graph.

Our proof of Theorem 1 can, in fact, be extended to the following corollary.

Corollary 1. For any set W of vertices and x =
∑

w∈W d(w), we have∣∣∣∣∣∑
w∈W

(pt(w)− π(w))

∣∣∣∣∣ ≤ min(
√
x,
√

2m− x)

(
1− φ(W )2

2

)t

,

where φ(W ) is the conductance of W .

This corollary and its “inverse” have been used to design local clustering algorithms for graphs,
whose running time is nearly linear in the size of cluster returned.
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