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Lecture Outline:

• Leighton-Rao sparsest cut theorem

1 Leighton-Rao’s sparsest cut theorem

In the previous lecture, we already saw that Max-Flow f∗ could be much smaller than Min-Cut

η for the Uniform Multicommodity Flow problem, f∗ ≤ O
(

η
log n

)

. In this lecture, we are going

to show this inequality is tight up to constant factors in Uniform Multicommodity Flow problem.
This was proved by Leighton-Rao in 1990. The result was proved for multicommodity flow with
general demands later by Linial-London-Rabinovich and Aumann-Rabani.

First, let’s recall the LP for this problem. Let Pi be the set of paths between pair (si, ti), pi
j be the

jth path in Pi, dem(i) be the demands of pair (si, ti), and f i
j be the amount of commodity i sent

on path pi
j . Then we get the following LP for Demands Multicommodity Flow problem.

max f

s.t.
∑

pi
j
f i

j ≥ f · dem(i) ∀i
∑

pi
j
:e∈pi

j
f i

j ≤ ce ∀e

And its dual is

min
∑

e cede

s.t.
∑

e∈pi
j
de ≥ li ∀i, j

∑

i li · dem(i) ≥ 1

In the remainder, we assume uniform demands. That is, we assume we have a commodity for
each pair (u, v) with demand = 1. For simplicity, we also assume in this lecture that ce = 1.
The arguments can be easily generalized to arbitrary ce’s. (We could also replace the edge with
capacity ce with ce parallel edges of capacity 1. While this will suffice for proving the max-flow-min-
cut relationship in the above theorem, it would not establish the polynomial-time computability.)

Theorem 1. For any n, there is an n-node uniform multicommodity flow problem with Max-Flow

f∗ and Min-Cut η for which η = O (f∗ log n). And a cut of value O (f∗ log n) can be found in

polynomial time. In other words, this is an O (log n)-approximation for sparsest cut.

To provide some intuition, let us consider the following proof of the max-flow min-cut theorem for
the single commodity flow problem.



Single Commodity Flow: After solving the dual LP, we have de values. Treat these values as the
distance assignments of each edge. From the dual LP constraint, we know that the distance between
the source and the sink is 1. Now taking the source as center, begin to grow a ball continously with
radius t, t ranging from 0 to 1. The set of nodes inside the ball are all nodes that are within distance
t from the source, according to the de labels. From the complimentary slackness, we know if de > 0
then the corresponding edge is saturated, so the min-cut is some collection of this saturated edges.

Let C(t) denote the set of edges that cross the ball of radius t. At time t (t : 0 → 1), let x(t) be the
value of cut C(t). Then during the period (t, t + dt), the cut C(t) contributes x(t) · dt to

∑

e cede.

So
∫ 1

0
x(t)dt =

∑

e cede. From an averaging argument, we know ∃t at which C(t) ≤
∑

e cede = f∗.

Multicommodity Flow: We generalize the idea for single commodity flow to uniform multicom-
modity flow. After solving the dual LP, we know f∗ =

∑

e de. The average de value d = f∗/m
(here m is the number of edges whose de > 0). Now replace every edge e in the original graph G
by a path of ⌈de/d⌉ edges, each with distance d. We could have a new graph, G+. And the total
distance values of edges in this graph won’t exceed 2f∗. Furthermore, the total number of edges in
G+ does not exceed

∑

e:de>0⌈de/d⌉, which is at most 2m.

∑

all original edges

⌈

de

d

⌉

d ≤
∑ de

d
d +

∑

d ≤ f∗ + f∗ = 2f∗.

Our goal is to find a cut of value O (f∗ log n). We define set S as balanced if 2n
3

≥ |S| ≥ n
3
.

Otherwise, S is unbalanced. The following is a region growing approach similar to the single
commodity flow. Set

α =
O

(

n2 · f∗ log n
)

m

Pick a source in graph G+, grow the region hop by hop. Each hop we grow the region by d which
is the distance weight of edges in G+. After each hop, we compare the ratio #crossing edges

#internal edges
with α.

If the ratio is greater then α, we keep on growing. If not, we stop. Pick a new source, which is not
covered by any region, using the same approach to grow, until we all the sources are covered by a
region. After the region growing step, there are two possible cases.

case 1: For all the regions R′

is, the number of nodes from graph G is smaller or equal to 2n
3

. In
this case, we can group the regions into balanced set in the following way. If there is a region that
is larger than n

3
, then we can just pick this region as S and group the other regions as S̄. If all of

the regions are smaller than n
3
, then we can greedily pack regions to S until the size of S is larger

than n
3
. Because each region has the property that #crossing edges

#internal edges
≤ α, we know if we group some

regions together to a bigger region R, it still have this property, which means

#crossing edges

#internal edges
≤ α =

O
(

n2 · f∗ log n
)

m

So,

δ(R) = #crossing edges ≤
O

(

n2 · f∗ log n
)

m
· (#internal edges) ≤ O

(

n2 · f∗ log n
)

And |R| · |R̄| = O
(

n2
)

. We know this cut

η =
δ(R)

|R| · |R̄|
= O (f∗ log n)
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This means we find a cut of value O (f∗ log n).

case 2: There is a region R that contains more than 2n
3

nodes from graph G. Each step we grow

the region R, its ratio #crossing edges
#internal edges

≥ α until ith step. So the total number of edges included in

this region after each step is at least 1, (1+α), (1+α)2, . . . , (1+α)i. From (1+α)i ≤ m, we have

i ≤
log2m

log(1 + α)
≈

log 2m

α
=

m · log 2m

n2 · f∗ log n
= O

(

m

f∗n2

)

which mean the number of hops of this region is at most m
f∗n2 . Then the radius r of this region

r ≤ d ·
m

f∗n2
=

f∗

m
·

m

f∗n2
= O

(

1

n2

)

We can have r ≤ 1
2n2 by setting appropriate α value. By metric property, we know for any nodes

u and v,

dist(u, v) ≤ dist(u, R) + dist(v, R) +
1

2n2

From the constraint
∑

i li ≥ 1 in the dual, we have

1 ≤
∑

u,v

dist(u, v) ≤ 2n
∑

u

dist(u, R) +
1

2

So,
∑

u/∈R

dist(u, R) ≥
1

4n

Look at figure 1. Let ni be the number of nodes that are at least i hops away from the region R,
and ri be the ratio of #edges crossing cut i to the demand crossing cut i. Then #crossing edges ≥
ri ·

2n
3
· ni since the demand crossing cut is ≤ 2n

3
· ni. And its contribution to the left hand side of

the above inequality is ni ·
f∗

m . By average argument (contribution per edge), there is at least one
cut i for which

ni ·
f∗

m

ri ·
2n
3
· ni

≥
1/4n

m

So we have
ri ≤ 6f∗

Combining the above two cases, we can conclude that η ≤ O (f∗ log n).
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Figure 1: One region has more than 2n/3 nodes
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