College of Computer & Information Science Fall 2009
Northeastern University 6 November 2009
CS7880: Algorithmic Power Tools Scribe: Hooman Javaheri

Lecture Outline:

e Generalized Steiner Network

e Jain’s Algorithm (2-Approximation)

In this lecture, we will study a generalized form of the Steiner network problem. We will present a
2-approximation algorithm for this problem due to Kamal Jain.

1 Generalized Steiner Network

In the previous class we covered the Steiner Forest problem. A generalization of this problem is
the following:

Problem 1. Given a graph G(V, E), a cost function ¢c: E — Z*, and a connectivity requirement
Tup for each pair (u,v), find a min-cost subgraph of G satisfying the connectivity requirement for
all (u,v), where u, is maximum number of copies you can pick for edge e

We can write the problem as the following linear program:

mianea:e
s.t. Z ze > f(S)

ecd(S)
0 <z < e,

where

f(S) = max ry,
uw
u€S,vES

§(S) is the set of edges connecting S to S.

2 Jain’s algorithm for generalized steiner network problem

Jain’s algorithm is a 2-approximation algorithm for Generalized Steiner Network. This algorithm
use the following approach to solve the problem: Solve the LP, construct part of the solution by
selecting edges for which z. is large, redefine a new LP, and repeat until the whole connectivity
requirements are satisfied. The algorithm is formally specified in Algorithm 1.

This algorithm looks neat, but here are some issues:

Algorithm 1: Jain’s algorithm for generalized steiner network problem
1. F + @ , Define f according to ryys. f' < f.
2. repeat
2.1. Solve LP for f’ to obtain a solution z with desired property: Je s.t. z. > 1/2
2.2. Add [z.] copies of all e s.t. z, > 1/2 to F
2.3. Remove the above edges e from G.
2.4. f'(S) + max(0, f(S) — dr(S)) where, 6r(S) is set of edges of F crossing S.
until f/(S) =0
3. Return F'

e How do we solve the LP efficiently? Looking at the definition, the number of the constraints
in the LP is exponential. To obtain a poly-time algorithm we need to solve LP in poly-time.
Can we do that?

e It might be the case that in some iteration the redefined LP cannot be solved (infeasible).

e How do we calculate fI(S) in poly-time? It’s easy to see that we have exponential number of
the sets in each iteration.

e Does the algorithm terminate? Is the termination time polynomial?

In order to prove that this algorithm is a 2-approximation algorithm, we need to answer above
questions. Our approach to answer the questions is as following. We will prove:

1. The LP can be solved in polynomial time; in fact, we will find an optimal BFS in each
iteration. And we will solve the LP without explicitly maintaining the function f(-).

2. The algorithm is a 2-approximation assuming the desired property in statement 2.1 is true.

3. Desired Property: for all BFSs, Je s.t. x> 1/2 Actually, we will prove it for 1/3 rather
than 1/2. The approach for 1/2 is the similar, but requires some complicated case analysis,
for which we refer to the original paper.

These proofs answer the challenges we face. Part 1 answers the issue about solving the LP. Parts
1 and 2 together prove the termination of the algorithm. Looking at step 2.3 in algorithm, we can
easily see if we find BFS with desired property, at least one edge will be removed from our graph,
so the termination time of the algorithm will be polynomial. The most important part of the proof
is establishing the desired property of step 2.1.

Claim 1. We can solve the LP in polynomial time.

Proof. We know our LP has exponential number of constraints, therefore it is inefficient to solve
this LP going through all constraints. Our proof is based on the Seperation Oracle Method.

Theorem 1 (Grotschel, Lovész, Schrijver). An LP
min CTz

st. € P

which has exponential number of constraints can be solved to yield an optimal BFS in polynomial
time given a polynomial time procedure (oracle) that determines for a given x, either x € P or a
hyperplane (e.g. violating constraint) which separates x from P.

All we need to show is our LP has this property. Let’s look at the LP again.

min E Cexe

where,

f(S) = max 7y,
U
ueS,weS

It’s easy to see that any solution for LP satisfies all cut constraints. That means x allows a flow of
size 1y, from u to v. Now we can define our polynomial-time oracle.

Given z, set the z, to be capacity of edge e. Run MAX-FLOW from u to v. If flow < ry,, return
MIN-CUT separating u and v which has capacity < ry,. If Yu,v, flow between u and v is at least
Tuy, then z is feasible (z € P).

We know MAX-FLOW runs in Poly-time. To solve our LP we need O(n?) MAX-FLOW executions
totally. (This number can be improved to n — 1 using Gomory-Hu trees.) So in the first iteration
we can solve our LP in poly-time.

Now suppose we are in the second iteration. We have already selected some edges and added them
to our solution F. The second iteration gives us z’ as a new solution according to f’. We can solve
LP defined by f’ by running O(n?) MAX-FLOW computation on the graph given by ' + F. The
oracle is defined as before. If the oracle confirms that z’ + F is feasible, we can make sure that in
each iteration our accumulative solution would be feasible for the original problem.

We can solve this LP using the separation oracle method, which in fact, yields an optimal BFS in
poly-time. O

Theorem 2. Jain’s algorithm is a 2-approzimation algorithm assuming we can always find an
optimal BFS satisfying desired property of step 2.1.

Proof. (Proof by induction on number of iterations)
Base case: Suppose we have only one iteration in our algorithm. (i.e. the algorithm give the final
solution after one iteration.)

Cost(F) = Z Ce " [ze]

e€F,zc>1/2

<2 Z Ce " Te

eCcF,ze>1/2

Szce'we

ecF

= 2LPypT < 2- OPT

Suppose for a given f’, our solution F' is obtained in ¢ iterations and has Cost < 2- LPopT(f').
We are solving the problem for f. Suppose, in the first iteration, solution returned is x.

LPOPT = Z Ce * Te
e

F, = edges picked in the first iteration ([z.] copies of each edge with z, > 1/2)

f'(8) = £(S) — dr, ()
Solving LP for f’, we get solution F' and our final solution will be Fy J F".

Cost(F) < Cost(Fy) + Cost(F')

< Z Ce [Te] +2- LPOPT(f,)
eCF,z.>1/2

we need to prove that
Cost(f) <2- LPgpr(f),

which holds true if
LPopr(f) <LPopr(D) — Y. coae

ecF,z.>1/2

Define

z

:{ ff%J xe0>/‘i/2

) e Te < 1/2
’ ””—{0 zo > 1/2

Since z is feasible for LP(f), z — % is a feasible solution for LP(f’), so we can say

LPopr(f') < LPopT(f) — D cerme
ere>1/2

and we are done.

O

Theorem 3. For every BFS for the generalized steiner network problem’s LP, Je s.t. z, > 1/2.

Note that this theorem has nothing to do with objective function and only concerns the polytope
constructed by the set of constraints. We will prove this theorem in two steps. First, we will
establish the following theorem.

Figure 1: Definition of crossing sets

Figure 2: Example of a Laminar family

Theorem 4. Assume z. € (0,1) (i.e. not including 0 and 1) for all e. Suppose there are m
such edges. There exist a set of m "TIGHT” constraints that are independent and form a laminar
family.

By independent, we mean none of the constraints can be written as linear combination of others.
A laminar family is defined as follows:
Definition 1: Two sets S and T cross if S —T,7 — S, S NT are all non-empty. Look at Figure 1.

Definition 2: A laminar family is a collection of sets no two of which cross. Figure 2 shows an
example of a laminar family. In some sense, a laminar family looks like a hierarchy of sets. (This
observation helps us to prove the theorem later on.)

Using the above theorem, we will then establish the desired property.

