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Lecture Outline:

• Packet Routing Problem

• Application of LLL to Packet Routing

In this lecture, we study the packet routing problem introduced last class and prove using the Lovasz
Local Lemma a schedule of length (c+ d)2O(log∗d) that achieves queue size at most (log d)2O(log∗d),
where c and d are the congestion and dilation, respectively, of the given set of paths. This is a
weaker version of the main result of Leighton-Maggs-Rao that shows the existence of a schedule of
length O(c+ d) with constant-size queues [LMR94].

1 Packet Routing Problem

Packet routing is the process of selecting paths in a network along which to send packets of data.
Routing is performed for many kinds of networks and it has been widely used for parallel computing
design.

In this section we introduce the Packet Routing problem and we analyze a greedy algorithm that
solve this problem. (This portion of the notes repeats a result also covered in the notes of the
previous class.)

Given a network that contains a set of paths, packet routing is the problem where we need to route
unit sized packets of data across each path. Each node stores a queue and at each step a packet
can either move from one node to an other or wait in a queue. At each step at most one packet
can traverse each edge. Upon traversing an edge (x, y) a packet is removed from node’s x queue
and placed in node’s y queue. The size of a queue at a particular step is the number of unit-sized
packets that it contains. When we talk about maximum or minimum queue size in a network we
will exclude the queue size of the origin and destination nodes.

In packet routing problem we call schedule for a set of packets, the movement timing of packets
along their paths.

Problem 1 (Packet Routing). Given a graph G = (V,E) that contains n paths for the packets,
determine the shortest total time schedule for the packets, with the smallest possible queue size
needed such that all the packets are moved from their origins to their desired destination node.

For our analysis, assume that for every edge e ∈ E, the number of paths that use e is at most c
and the length of each path is at most d. We call number c congestion and number d the dilation
of the paths.



Naive Algorithm

Given a network that contains a set of n paths for the packets with congestion c and dilation d,
route the packets to their destination nodes using queues of size c at each node. It is easy to see
that the naive algorithm routes all packets to their destination in at most O(cd) steps, since queues
of size c at each node guarantees that each packet can be delayed for at most O(c) steps at each
node, for at most d nodes. So the maximum over all packets time to move a packet from its origin
to its destination node is O(cd) and the maximum queue size is O(c).

Randomized On-line Algorithm

We introduce a simple randomized on-line algorithm that produce a much better schedule of length
O(c+ d log (nd)) with queue size O(log (nd)), where c is the congestion, d the dilation and n is the
number of packets in the network.

Consider the following algorithm:

• Assign each packet randomly, independently and uniformly a delay chosen from the interval
[0, R], where R is a constant that we will determine later.

• In the produced schedule, each packet that is assigned a delay x waits in the queue of its
origin node for x time steps and then it moves to its destination without waiting to any other
node’s queue.

Suppose an invalid schedule where there exists the property that the number of packets traversing
each edge simultaneously are at most k. Then it is easy to convert it to a valid schedule, without
capacity constraints, by assuming that each time step of the invalid schedule corresponds to k steps
of a valid one. Since the length of invalid schedule will be at most (R+ d), the length of the valid
one will be at most k(R+ d).

Analysis of the Greedy Algorithm

We will analyze the invalid schedule that we propose above, since it is straightforward how one can
convert it to a valid one. We need to set values for R and k such that the maximum queue size is
at most k, with high probability.

We know that a fixed edge f is used by at most c paths and that the probability that k packets go
through this edge at a fixed time step t, is

(
1
R

)k. Thus:

Pr[(Number of packets going through a fixed edge f) ≥ k] ≤
(
c

k

)(
1
R

)k
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If we set R = c, then:

Pr[(Number of packets going through a fixed edge f) ≥ k] ≤
(
c

k
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)k
≤
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)
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)k
since we know that

(
c
k

)
≤
(
ec
k

)k.
Consider as a bad event, the event where more than k packets go through the fixed edge f at time
step t. Then, applying the union bound we have that:

Pr[(No bad event happens)] ≤
( e
k

)k
(nd)(c+ d)

where (nd) comes from the number of possible choices for the fixed edge f and the (c+d) from the
number of choices for the time step t.
We can control the value of k so that the value

(
e
k

)k becomes smaller than 1 by setting kk �
nd(c+ d).

If we now set R = αc
log (nd) , where α is a fixed constant and k = β log (nd), then

Pr[Number of packets through f at time step t ≥ k] ≤
(
c

k

)(
1
R

)k
≤

[
ec

β log (nd)

]β log (nd) [ log (nd)
αc

]β log (nd)

=
[
e

αβ

]β log (nd)

=
[ e
α

]log (nd)

and by setting α = 8e and applying the union bound we have that:

Pr[Any edge at any time has at least k packets] ≤
[ e
α

]log (nd)
(nd)(c+ d)

=
nd(c+ d)
n3d3

=
c+ d

n2d2

≤ 1
n

If we plug these values back in, the length of final valid schedule is at most k(R+d) = log (nd)[ αc
log(nd)+

d] = O(c+ d log (nd)) and achieves this bound with probability at least 1− 1
n .

The queue size of the valid schedule is at most log (nd), since no more than k = O(log (nd)) packets
pass through any edge at any time step.
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2 A schedule of length O((c+ d)2O(log∗ (c+d)))

In the previous section we proved that there exists a randomized algorithm that produce a schedule
of length O(c+ d log (nd)) using at most log (nd) queue size with probability at most 1− 1

n , where
c is the congestion, d the dilation and n is the number of packets in the network. In [LMR94]
Leighton et al. shows that there exists a O(c+d)-step schedule with maximum queue size O(1). In
this section we will introduce a simpler schedule of length (c + d)2O(log∗d) and queue size at most
(log d)2O(log∗d).

We first give some definitions we will use:

• A frame T is a sequence of |T | time steps.

• Congestion of a frame, C, is the maximum number of packets crossing any edge in the frame.

• Relative congestion, R, of a frame is defined as the ratio: R = Congestion of T
|T | .

We give a Lemma that we use to prove the main theorem.

Lemma 1. For every set of packets that have congestion c and dilation d, there exists a schedule of
length O(c+ d) such that no packet ever waits in queues once it starts and the relative congestion
of any frame of length at most log d is at most 1.

Proof. For our proof we are going to use the Symmetric Lovasz Local Lemma (LLL).

First, assign an initial random delay to each packet. The delays are chosen randomly, independently
and uniformly from the interval [1, αd], where α is a fixed constant that we will determine later
when we will apply Lovasz Local Lemma. In the produced schedule, each packet that is assigned a
delay x waits in the queue of its origin node for x time steps and then it moves to its destination
without waiting to any other node’s queue, as we did for the randomized on-line algorithm.

We define by (T, f) a bad event for an edge f in a frame T , where more than |T | packets pass
through the edge f , for |T | ≥ log d. We will use LLL to prove that there exists a set of delays such
that if we choose the delays randomly, independently and uniformly from the interval [1, αd] then
with nonzero probability no bad event happens in any frame of size |T | ≥ log d, which means that
the relative congestion will be at most 1.

To apply LLL, we need to compute the dependences among the bad events and the probability of
each individual bad event to occur. We can assume, at the expense of only a factor of two in the
bounds, that the congestion c equals the dilation d.

• Computation of dependences among the bad events:
Consider two bad events: (T1, f1) and (T2, f2). Since at most c packets are crossing a fixed
edge and each of these packets are crossing d other edges, the dependence for these two events
is at most cd = d2.

• Computation of probability of each bad event to occur:
For any frame T and edge f , the probability that the number of packets going through f in
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T is at least k is:

Pr[Number of packets through f in T ≥ k] ≤
(
d

k

)(
|T |
αd

)k
≤

(
ed

k

)k ( |T |
αd

)k
=

(
e|T |
αk

)k
since a fixed edge f is used by at most d paths and the probability that k packets go through

this edge at a fixed time t is
(
|T |
αd

)k
, since at most |T | out of all possible αd delays will send

a packet through edge f .

Now we need to choose such a k and α that makes the relative congestion to be at most 1. If
we set k = |T | and we let |T | ≥ log (d), then:

p = Pr[Number of packets through f in T ≥ |T |] ≤
(
e|T |
α|T |

)|T |
=

( e
α

)|T |
For fixed and sufficiently large α, probability p that more than k = |T | packets go through the
fixed edge f at time step t, is getting sufficiently small. In addition the product epb becomes less
than 1, where p is the probability that each bad event occurs with dependence at most b. Thus,
the LLL conditions apply to the Lemma, which means that there is some choice of delays such that
the relative congestion in any frame of size at least log d is at most 1.

Theorem 1. For any set of packets that have dilation d and withough loss of generality assume
that the congestion c equals d, there exists a schedule of length (c + d)2O(log∗d) and queue size at
most (log d)2O(log∗d), in which at each step only at most one packet can traverse each edge.

Proof. We assume the following algorithm for producing a schedule:

• By using Lemma, produce a schedule S where the number of packets that use an edge in any
frame of length log d is at most log d.

• Break the schedule into frames of size log d.

• Consider each frame of length log d as a new routing problem that has dilation and congestion
log d, and solve it recursively, until the frames have constant size and at most a constant
number of packets use each edge in each frame.

The depth of the recursion is O(log∗ d). Since the length of the new schedule increases by a constant
factor during each recursive step, the length of the final schedule will be (c + d)2O(log∗ d) and the
queue size will be at most the maximum amount of time steps that a packet wait, which is at most
O(log d)2O(log∗ d) = O(log d2O(log∗ d)).
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