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Lecture Outline:

• Randomized Rounding: The Set Cover Problem

• Linear Programming: An Overview

• Linear Programming: The Forms

• Linear Programming: Geometry & Duality

This lecture introduces the technique of rounding LP relaxations for designing approximation algo-
rithms. We introduce the randomized rounding approach using the set cover problem. The rounding
algorithm produces a set cover solution that, with probability almost 1, covers all elements with
cost O(lnn) times that of optimal cost. We then present an overview of linear programming.

1 Rounding for set cover

Recall the definition of the set cover problem.

Problem 1. Given a universe U = {e1, . . . , en} of n elements, a collection S of m subsets of U , and
a cost function c : S → Q+, the set cover problem seeks a minimum-cost subset of S that covers
all elements of U .

Here the set cover problem will be put into a linear programming framework. First, let’s look at
the result, our goal is to minimize the cost of each set. We will allow the variable x to represent
the inclusion of each set, where:

xs =
{

1 if set is selected
0 otherwise

From this, the linear programming set cover problem can be formulated. Note that each element
u should be in some chosen subset, or u ∈

⋃
s∈S xs = 1∀e ∈ U :

min
∑

s∈S xs × c(s)
s.t.

∑
s∈S(xs × su) ≥ 1 ∀u ∈ U

xs ∈ {0, 1} ∀s ∈ S

An important note here is that if we replace the constraint xs ∈ {0, 1} with the constraint xs ≥ 0,
then the problem reduces to solving the following linear program.



min
∑
S∈S

cSxS

s.t.
∑
e∈S

xS ≥ 1;∀e ∈ U

xS ≥ 0;∀S ∈ S

While integer linear programming is NP-complete, linear programming is a problem in P . Since
one can solve the linear program, a natural approach for an approximation is to round the result
solution returned by the linear program in an intelligent way. Consider the following example:

U = {A,B,C}
S = {{A,B}, {B,C}, {A,C}}

c(s ∈ S) = 1

The optimal integer solution here is to choose any two of the sets, for a total cost of 2. However,
a non-integer solution could pick half of each set, leading to each value being covered half-ways by
two sets. The total cost of this solution is only 1.5. The fractional solution is always a bound on
the optimal solution for integer linear programming. If the gap between the fractional solution and
an algorithm can be determined, this is an adequate proof of the upper bound of the gap between
the integer solution and the algorihtm as well.

Suppose {x∗S} is an optimal solution for above LP problem. Notice x∗S could be a fractional value
between 0 and 1. In order to apply the LP solution back to the set cover problem, we need to
round {x∗s}. Let us consider two natural rounding methods.

• Nearest rounding:

x∗S ≥
1
2
→ xS = 1

x∗S <
1
2
→ xS = 1

• Randomized rounding: Interpret xs as a probability that set s is selected.

To analyze the rounding approaches, we must ask two questions:

• q1: What’s the cost of rounding algorithm (compared with optimal cost given by LP)?

• q2: Are all elements covered?

For nearest rounding, consider this scenario: for every set S that contains a given element e, we
have x∗S <

1
2 . In this case, e will definitely not be covered after rounding. It is easy to construct

examples where this is the case for all elements. This scenario is surely undesirable.

Let’s consider randomized rounding.
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• q1: Suppose X = collection of selected sets after randomized rounding. Then the total cost
is

C(X) =
∑
S∈X

c(S).

The expected total cost is

E[C(X)] =
∑
S∈X

Pr[S ∈ X] · c(S)]

=
∑
S∈X

x∗Sc(S)

= OPTLP

≤ OPT

So the expected cost of randomized rounding is as good as the LP cost, which we know is a
lower bound on the cost of an optimal set cover.

• q2: For an element e, assume that it occurs in sets s1, s2, ..., sk. The probability that e is not
covered is

pē =
∏

i=1,··· ,k
(1− x∗si

)

Since x∗s1 + x∗s2 + · · ·+ x∗sk
≥ 1, we have

pē = (1− xs1)(1− xs2) · · · (1− xsk
)

≤
(

1− 1
k

)k
≤ 1

e

So the probability that e is covered by X is

pe = 1− pē ≥ 1− 1
e
.

The expected cost of randomized rounding is good, but we have not guaranteed that all elements
are covered. In fact, there is a very good chance that all the elements are not covered. On the other
hand, any given element is covered with at least a constant non-zero probability. An improvement
to the simple randomized rounding is to repeat randomized rounding for t times and combine the
result

X =
t⋃
i=1

Xi,

in which Xi is the result of ith randomized rounding. The improved randomized rounding has

E[C(X)] ≤ t ·OPT,

Pr[given element is not covered] ≤ 1
et
.
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Then the probability that at least one element is not covered is

Pr[some element is not covered] ≤
∑
ei∈U

Pr[eiis not covered]

= n
et

(Note that Pr[some element is not covered] is not equal to 1 − (1 − 1
et )n, since the events defined

by the coverage of each element are not independent.)

Given a threshold ε, we now compute how many rounds of randomized rounding are needed to
assure that the probability that some element is not covered is lower than ε.

n

et
≤ ε⇒ t ≥ ln

n

ε
.

So a solution that repeats randomized rounding for n
ε times and return X =

⋃t
i=1Xi satisfies

E[C(X)] ≤ OPT · ln(
n

ε
),

p[X is not a valid solution] ≤ ε.

From Markov’s inequality pr[Y ≥ α] ≤ E[Y ]
α , we have

ps[C(X) ≥ 4 ·OPT · ln(
n

ε
)] ≤ E[C(X)]

4 ·OPT · ln(nε )
≤ 1

4
.

If we set ε = 1
4 ,

p[X is valid and C(X) ≤ 4 ·OPT · ln(4n)] ≥ 1
2
,

and corresponding algorithm is

1. Solve LP;

2. Repeat randomized rounding for ln(4n) times and get a solution X =
⋃t
i=1Xi;

3. If C(X) ≥ 4 ·OPT · ln(4n) or X is not valid, go back to step 2; otherwise return X as a final
solution.

The expected number of iterations of step 2 of the above algorithm before the algorithm terminates
is at most 2. In fact, the probability that the algorithm terminates in T iterations is at least
1− 1/2T .
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2 Linear Programming

We give a very brief overview of linear programming. First different linear programming forms
are provided, then we list three approaches for solving linear programs. Finally, we present a
geometric approach to understanding LPs. Two excellent reference sources (among many others)
are Michel Goemans’s lecture notes on linear programming [Goe94], and Howard Karloff’s text on
linear programming [Kar91].

2.1 The Forms

There are three main forms that linear programs may take. Those forms are listed below, a short
description of each is provided, and a practical example of each is also given. The forms are in
order according to restrictiveness. Fortunately, any linear program (a linear program in its general
form), can be converted into the most restrictive form (the slack form) easily.

2.1.1 General Form

All forms of linear inequalities are allowed in the general form.

min
∑n

i=1 ci × xi
s.t.

∑n
i=1 aij × xi > bj ∀j∑n
i=1 aij × xi = bj ∀j

xi ≥ 0 ∀i
xi 6= 0 ∀i

Note that upper bound constraints (with a ≤ sign) are not required, as they can be transformed
into lower bound constraints simply by multiplying both sides of the constraint by −1.

2.1.2 Standard Form

The standard form does not allow for equality comparisons and requires that all variables be
nonnegative.

min
∑n

i=1 ci × xi
s.t.

∑n
i=1 aij × xi ≥ bj ∀j

xi ≥ 0 ∀i

To get rid of equality comparisons, simply ensure that ≥ and ≤ both hold, which will require
negating the ≤ comparison to make it a ≥, as described in the general form.

2.1.3 Slack Form

The slack form only allows for equality comparisons for the summations, and requires that all
variables be nonnegative. An example is shown below.
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min
∑n

i=1 ci × xi
s.t.

∑n
i=1 aij × xi = bj ∀j

xi ≥ 0 ∀i

To obtain an equality comparison, an extra variable can be introduced (such variables are referred
to as slack variables, hence the name slack form). For example

2x1 + 3x2 ≥ 5

is the same as

2x1 + 3x2 − t = 5
t ≥ 0

2.2 Solving LPs

Below lists the three main linear programming algorithms listed historically:

Simplex - Invented by George Dantzig in 1947 to solve linear programming problems, this tech-
nique was fast for most practical applications. However, it is non-polynomial in worst case
scenarios, and later examples were provided where simplex failed to perform efficiently.

Ellipsoid - Introduced by Naum Z. Shor, Arkady Nemirovsky, and David B. Yudin in 1972, and
shown to be polynomial by Leonid Khachiyan, this technique, while polynomial, is in practice
typically much slower than the simplex algorithm and was therefor rarely used. It was useful
for showing that general linear programming was in P however.

Interior Point - Introduced and developed by Narendra Karmarkar in 1984, this mehtod has the
advantage of being polynomial like the ellipsoid algorithm, but also fast in practice, like the
simplex algorithm. For this reason it was used in practice for a long time. Now, however,
hybrids and other variations are used in many cases.

2.3 The Geometry of LP

Consider a linear program with n variables and m linear constraints. The set of possible values
for the n variables is a subset of <n. Each constraint corresponds to a half-space of <n as defined
by an associated hyperplane. The body enclosed by the set of these hyperplanes is referred to as
polytope.

For any linear program, exactly one of the following conditions holds:

• The solution is unbounded (infinite)

• The solution is infeasible (no polytope exists)

• An optimal solution occurs on a vertex of the polytope
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A polytope is always convex, by which we mean that

• A line between 2 points in the polytope remains in the polytope

• If x, y ∈ P , αx+ (1− α)y ∈ P for α ∈ [0, 1]

A vertex, x, of a convex polytope P , is a “corner point” in the polytope and can be defined by any
one of these three equivalent statements, as we show next.

• ¬∃y 6= 0 s.t. x+ y, x− y ∈ P

• ¬∃y, z ∈ P s.t. x = αy + (1− α)z, α ∈ (0, 1)

• ∃n linear inequalities of P that are tight at x

The proof that definitions 1 and 2 are equivalent shall be left to the reader. Here we will prove
that claims 1 and 3 are equivalent.

2.3.1 1 implies 3

Suppose ¬3. Let A′ be the submatrix corresponding to the tight inequalities, let b’ be the cor-
responding right hand sides. This leads to the inequality A′x = b′, where there are remaining
equations A′′ and right hand sides, b− b′′. The rank of A′ is strictly less than n. This implies that
∃y 6= 0 s.t. A′y = 0.

Consider x+ λy, A′(x+ λy) = A′x+ λA′y = b′. Find λ ≥ 0 s.t. x+ λy, x− λ ∈ P . Now consider
any one of the non-tight inequalities, j. Ajx > bj . Apply λ, getting Aj(x+λy) = Ajx+λAjy. It is
known that Ajx > bj . Because Ajx = bj is not tight, λAjy must be feasible in one direction for a
short distance, and the other direction infinitely. We shall select a distance λj equal to that short
distance. Finally, we shall select λ = minj |λj |. Because the associated constraints are not tight, λ
cannot be zero. This directly contradicts 1.

2.3.2 3 implies 1

Let A′ denote the submatrix for tight inequalities, as was done above. This implies the rank
of A′ ≥ n. Suppose ¬1. This implies ∃y 6= 0 s.t. x + y, x − y ∈ P . Consider the fact that
A′(x+ y) ≥ b′, A′(x− y) ≥ b′. This implies that A′y = 0, which implies that the rank of A′ is less
than n. This contradicts the assertion made earlier.

2.4 Optimality at a Vertex

The claim was made in the previous class that an optimal solution must occur at a vertex.
More specifically, if the linear program is feasible and bounded, then ∃v ∈ V ertices(P ) s.t. ∀x ∈
P,CT v ≤ CTx. This statement, along with fundamentally stating that an optimal solution must
occur at a vertex, also shows the decidability of solving for the system, as one can simply check all
the vertices. A proof follows.
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2.4.1 Proof

The proof shall proceed by picking a non-vertex point and showing that there exists as good or
better of a solution with at least one less non-tight equation. Hence progress is made towards a
vertex by applying this process iteratively. To find a vertex that is optimal this iteration will have
to be done at most n+m times.

Suppose x ∈ P and x 6⊂ V ertices(P ). This implies ∃y 6= 0 s.t. x + y, x − y ∈ P . This in turn
implies (x+y, x−y ≥ 0)→ (xi = 0→ yi = 0). Consider v = x+λy. CT v = CTx+λCT y. Assume
without loss of generality that CT y ≤ 0. If this was not the case, the other direction could simply
have been selected (x− y).

Now suppose that A′ and b′ give the set of tight variables, as before. We know that A′(x+ y) ≥ b′.
This implies A′y = 0, and that A′(x + λy) = b′. Once again, we will find the λj values for the
non-tight equations. There are two possibilities:

• ∃λj ≥ 0: In this case, we selecte the smallest such λj value, λ. The point x+ λy now makes
one additional inequality tight while satisfying the property that it keeps the previously tight
inequalities tight. And we have made progress towards a solution.

• ∀jλj < 0: Here, either CT y < 0, in which case the solution is unbounded, or CT y < 0 in
which case we use the go to the ∃λj ≥ 0 case, as our cost function will remain the same no
matter which direction we move in.

2.5 Duality

One can view any minimization linear program as a maximization. Consider the following linear
system:

min 3x1 + 2x2 + 8x3

s.t. x1 − x2 + 2x3 ≥ 5
x1 + 2x2 + 4x3 ≥ 10
x1, x2, x3 ≥ 0

Where Z∗ is OPT, we know Z∗ = 3x∗1 + 2x∗2 + 8x∗3, for some x∗1, x
∗
2, x
∗
3 ∈ P . By adding two of the

inequalities, we arrive at 2x1 + x2 + x3 ≥ 15. Since x∗1, x
∗
2, x
∗
3 ≥ 0, we know that Z∗ ≥ 15. But we

aren’t limited to addition, multiplication is another way the equations can be combined. So how is
this new formulation bouned? This is done by using the dual formulation, D of the minimization,
which for this problem is:

max 5y1 + 10y2

s.t. y1 + y2 ≤ 3
−y1 + 2y2 ≤ 2
2y1 + 4y2 ≤ 8
y1, y2 ≥ 0

The theory of LP duality (sometimes referred to as the Strong Duality Theorem) says that if the
primal LP P is bounded and feasible, then the value of the primal LP equals the value of the dual
LP.
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2.5.1 Weak Duality

Weak duality makes only the claim that the value of the primal LP is at least the value of the dual
LP. Consider the primal P and its dual D:

P D
min cTx max bT y
s.t. Ax ≥ b s.t. AT y ≤ c

x ≥ 0 y ≥ 0

Suppose that x∗ is an optimal solution to P and y∗ is an optimal solution to D. We need only
show that cTx∗ ≥ bT y∗.

cTx∗ ≥ (AT y∗)Tx∗

= y∗TAx∗

bT y∗ ≤ x∗TAT y∗

= (y∗TAx∗)T

Noting that the last equation of each of these comparison are identical (since the transpose of a
scalar is the scalar itself) leads to the desired conclusion.
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