
College of Computer & Information Science Fall 2009
Northeastern University 13 October 2009
CS7880: Algorithmic Power Tools Scribe: San Tan and Bishal Thapa

Lecture Outline:

• Uncapacitated Facility Location:

– NP-hardness and randomized rounding

– Linear Programming Rounding Approach : Constant (6)-Approximation

In this lecture, we first introduce the class of facility location problems, and then focus on the
uncapacitated facility location problem (UFL). We show that UFL is NP-hard. We then consider
a randomized rounding approach that yields a logarithmic-approximation to the problem. Finally,
we present a deterministic rounding approach that yields a constant-factor approximation.

1 (metric) Uncapacitated Facility Location

Problem 1. We are given a set V of demand locations (or clients), a set F of potential facility
locations, a cost function c : (V

⋃
F) × (V

⋃
F) → Q+, cost fj of opening facility at j ∈ F , and

demand di at client i ∈ V . The goal is to determine locations S ⊆ F where to open facilities and
σ : V → S to minimize

∑
j∈S fj +

∑
i∈V ciσidi.

The notation is summarized in the following table.

V Set of demand points (clients)
F Set of possible facility locations
di Demand for the service at demand point i
c Metric on V ∪ F
cij Cost for assigning i ∈ V to facility j ∈ F
σ Assignment function, σ : V → F
fj Cost of opening a facility at location j ∈ F
FacilityCost =

∑
j∈F fj

ServiceCost =
∑

i∈V di × ciσ(i)

TotalCost = FacilityCost + ServiceCost

There are different variants of problem 1

• Metric or non-metric: metric means the cost function of problem 1 satisfies symmetry and
triangle inequality,

cij = cji; cij ≤ cik + ckj ; cii = 0.

• Capacity of facility: There is a bound on the total demand (or number of clients) that a
facility can serve

• There is a bound on the number of facilities (or cost of facilities) that can be opened

• Facility costs

In this class, we will focus on the uncapacitated metric facility location (UFL). Example applications
of facility locations include

• Hub and spoke scheduling;

• Locating concentrators in a routing network;

• Locating servers in a content-delivery network.

Theorem 1. UFL is NP-Hard.

Proof. Reduction from set cover. Use notations defined in set cover problem and problem 1.
Construct a UFL problem as follows from set cover.

• U → V ,

• S → F ,

• cij =

{
1 if ei ∈ sj ;
3 otherwise;

• fj = 1,

• di = 1.

It is easy to check that the cost function is a metric. We now argue that there exists a set cover of
cost C if and only if there exists a facility location solution of cost at most C + n.

One direction is trivial. If there is a set cover of cost C, then the sets form the facilities, with a
total cost of C + n.

We now consider the other direction. Suppose we have a facility location solution of cost C + n.

• case 1: The service cost is equal to n. The selected facilities yield the collection of sets of cost
C for the set cover problem.

• case 2: The service cost is greater than n. For each client i that is paying service cost at least
3, add a facility j such that j /∈ {selected facilities} and cij = 1. Since 1 + cij ≤ 3, the total
cost doesn’t increase. Then go to case 1.

A possible approximation algorithm for UFL is to reduce it to set cover problem, then solve it using
LP-rounding. For each facility, (2|V | − 1) sets are generated, with cost of c = xjs, s ⊆ V , in which
xjs = fj +

∑
i∈s cij . However, this approach has exponential-complexity. It’s not hard to reduce

the solution to polynomial time by identifying only those sets that could possibly be in an optimal
solution.

2

2 Randomized rounding approach for UFL

Consider the following integer linear program for UFL. For any j ∈ F , define

yj =

{
1 if facility is opened at j,
0 otherwise.

Obviously clients should be assigned to nearest facility. For i ∈ V , σ(i) = nearest j such that yj =
1. Define

xij =

{
1 if i is served by j,
0 otherwise.

Then, the integer linear program is the following.

min
∑
j∈F

fj × yj +
∑
i∈V

xij × cij

s.t. xij ≤ yj ∀i ∈ V, j ∈ F∑
j

xij ≥ 1 ∀i ∈ V

xij , yj ∈ {0, 1} ∀i ∈ V, j ∈ F

By relaxing the integrality constraints we get the linear program:

min
∑
j∈F

fj × yj +
∑
i∈V

xij × cij

s.t. xij ≤ yj ∀i ∈ V, j ∈ F∑
j

xij ≥ 1 ∀i ∈ V

xij , yj ≥ 0 ∀i ∈ V, j ∈ F

Suppose that an optimal solution for the above LP is {x∗} and {y∗}. Here is a randomized rounding
approach.

• open facility at j with probability y∗j . so

E[facility cost so far] =
∑
j

y∗j fj .

• if distance of i to nearest open facility is at most ri = 2
∑

j x
∗
ijcij , then assign i to nearest

open facility; otherwise don’t assign. (Note that if we do not have a filter like this, the client
costs could be arbitrarily high.)

Lemma 1. ∀i ∈ V,Pr[i is assigned] ≥ 1− 1√
e
.

3

Proof. Supose B is a ball centering i with radius 2
∑

j x
∗
ijcij . We have∑

j∈B
y∗j ≥

∑
j∈B

x∗ij

≥ 1
2
,

because ∑
j /∈B

x∗ij =
ri
∑

j /∈B x
∗
ij

ri

≤
∑

j x
∗
ijcij

ri

=
1
2ri

ri

=
1
2
.

So

Pr[i is assigned] = 1−
∏
j∈B

(1− y∗j)

≥ 1− (1− 1
2|F |

)|F |

≥ 1− 1√
e
.

Then, if we repeat the above round step t times and combine the rounding result in a way as we
did in set cover, we have

∀ client i,Pr[client i is not assigned] ≤ (
1√
e

)t.

Set t = log√e(4n) = O(log n), and obtain

Pr[client i is not assigned] ≤ 1
4n

;

Pr[some client is not assigned] ≤ 1
4

;

E[cost of solution] ≤ 2t ·OPTLP .

By Markov’s inequality, Pr[cost ≥ 8t ·OPTLP] ≤ 1
4 .

Putting these together with t = log√e(4n) = O(log n), we obtain that with probability at least 1/2,
we have a feasible facility location solution that has cost O(log n)OPTLP . As we did for the set
cover problem, we can improve our success probability by repeating the above process until we are
guaranteed a feasible solution with the desired approximation ratio.

4

3 A constant-approximation deterministic rounding algorithm

The logarithmic-approximation ratio of the randomized rounding approach is primarily due to the
fact that in each iteration of the algorithm, the probability that a client is served by a “nearby”
facility is only a constant fraction (less than 1). Note, however, that the randomized algorithm
does not make use of the metric property anywhere. Can we do better by a more careful selection
of facilities and processing of the clients so as to obtain a constant-factor approximation?

Algorithm 1 is a deterministic rounding algorithm that achieves a solution of cost within a factor
of 6 to the optimal solution.

Algorithm 1: Rounding the fractional LP solution
1. Solve the fractional LP. Let (< x∗ij >,< y∗j >) be the optimum fractional solution.
2. for each client i ∈ V do

define:
ri = 2

∑
j x
∗
ij × cij

Bi = {j ∈ F |cij ≤ ri}
3. Sort ri in the non-decreasing order. WLOG, assume r1 ≤ r2 ≤ · · · ≤ rn.
4. Let V ′ := {r1, r2, · · · rn} s.t. the index-set of V ′ represents the clients. Call the set I[V ′].
5. Let i := 1, F ′ := ∅.
6. for client i ∈ I[V ′] do

let j ∈ Bi with x∗ij > 0 and fj minimum. Set F ′ = F ′ ∪ {j}.
let Ni = {rk ∈ V ′|Bi ∩Bk 6= ∅}.
for each client k s.t. rk ∈ Ni do

Set σ(k)← j.
Note: i ∈ Ni vacuously.
Set V ′ = V ′ \Ni while keeping the sorted order among the remaining elements as before.
Re-label the elements in the new V’ starting from index 1. (new I[V ′] ⊂ old I[V ′].)
If V ′ = ∅, break.

7. Output F ′ and σ.

Theorem 2. The running time for Algorithm 1 is polynomial in the size of input.

Proof. It is clear that the algorithm terminates. The algorithm consists of three processes: LP
solving, Sorting and Comparing. We know that the linear programming can be solved in polynomial
time using the ellipsoid or interior point methods. Sorting can be done very efficiently as well, using
a merge sort or heap sort at the cost of O(n log n) running time. Finally, the comparing procedure
involved in step 6 of Algorithm 1 can also be completed in polynomial-time.

Claim 1. ∀i ∈ V,
∑

j∈Bi y
∗
j ≥ 1

2

Proof. (Proof by Contradiction) Let LPi denote the service cost of client i ∈ V in the LP solution.
So, LPi =

∑
j x
∗
ij × cij . Assume that the claim is not true. Then,

∑
j∈Bi y

∗
j <

1
2 [hypothesis].

We have,
LPi ≥

∑
j /∈Bi

x∗ij × cij

5

because, the right hand side doesn’t include j’s inside the ball.

≥
∑
j /∈Bi

x∗ij × ri

= ri ×
∑
j /∈Bi

x∗ij


because, cij > ri ∀j /∈ Bi.

>
1
2
× ri

because of the hypothesis and the fact that,∑
j∈Bi

x∗ij ≤
∑
j∈Bi

y∗j

thus,
∑

j∈Bi x
∗
ij <

1
2 , which further implies,∑

j /∈Bi

x∗ij >
1
2

Hence, we get

LPi >
1
2
× ri = LPi (contradiction)

because of the definition of LPi.

Lemma 2. Let LPF denote the facility cost of the LP solution. Then,
∑

j∈F ′ fj ≤ 2× LPF .

Proof. We know LPF =
∑

j∈F fj × y∗j . For each j ∈ F ′, let ij denote the client in I[V ′] that was
considered, when j was added to F ′. Consider a ball Bij . Then,

∑
l∈Bij

y∗l × fl ≥
∑
l∈Bij

y∗l × fj

= fj ×
∑
l∈Bij

y∗l


because, we pick j ∈ Bij s.t. fj is minimum (refer to Step 6, Algorithm 1). Hence,∑

l∈Bij

y∗l × fl ≥
1
2
× fj

by previous equation and Claim 1. Adding over all j ∈ F ′,

1
2
×
∑
j∈F ′

fj ≤
∑
l∈Bij

y∗l × fl ≤
∑
j∈F

fj × y∗j

because, all the facilities are selected from non-overlapping balls. Hence,∑
j∈F ′

fj ≤ 2× LPF

6

Lemma 3. Let LPi be the service cost of client i ∈ V in the LP solution. Then, ∀i ∈ V ,
ciσ(i) ≤ 6× LPi.

Proof. Consider two possible cases for a client i:

1. Client i is such that some j ∈ Bi was selected in step 6 of the algorithm 1. Then,

ciσ(i) ≤ ri = 2× LPi

by definition of Bi.

2. Client i is removed at some iteration in Step 6, due to the overlap of Bi with Bk for some k.
Then, ri ≥ rk and there exists l ∈ Bi ∩ Bk. Assuming, we included j ∈ Bk in F ′, we have
σ(i) = σ(k) = j. Therefore,

cij ≤ cil + clk + ckj ≤ ri + 2× rk ≤ 3× ri,

by triangle inequality, leading to cij ≤ 6× LPi.

In either case, ciσ(i) ≤ 6× LPi.

Let LPS denote the service cost of the LP solution. Then, Lemma 3 gives us,∑
i∈V

ciσ(i) ≤ 6× LPS

.

Theorem 3. TotalCost ≤ 6× (LPF + LPS)

Proof. This follows directly from Lemmas 2 and 3 and the definition of TotalCost. Since
ServiceCost ≤ 6 × LPS and FacilityCost ≤ 2 × LPF , we have TotalCost ≤ 6 × (LPF +
LPS).

7

