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Lecture Outline:

• LP Duality: Farkas Lemma and the Strong Duality Theorem

• Uncapacitated Facility Location

– A Combinatorial “Greedy” Approach: 3-Approximation via dual fitting analysis

In this lecture, we first review LP duality, and prove the strong duality theoreom of linear pro-
gramming. We then study the uncapacitated facility location problem, and present a simple greedy
combinatorial algorithm. By means of a dual-fitting analysis, we show that the algorithm achieves
a 3-approximation.

1 LP Duality

One can view any minimization linear program as a maximization. Consider the following linear
system:

min 3x1 + 2x2 + 8x3

s.t. x1 − x2 + 2x3 ≥ 5
x1 + 2x2 + 4x3 ≥ 10
x1, x2, x3 ≥ 0

Where Z∗ is OPT, we know Z∗ = 3x∗1 + 2x∗2 + 8x∗3, for some x∗1, x
∗
2, x
∗
3 ∈ P . By adding two of the

inequalities, we arrive at 2x1 + x2 + x3 ≥ 15. Since x∗1, x
∗
2, x
∗
3 ≥ 0, we know that Z∗ ≥ 15. But we

aren’t limited to addition, multiplication is another way the equations can be combined. So how is
this new formulation bouned? This is done by using the dual formulation, D of the minimization,
which for this problem is:

max 5y1 + 10y2

s.t. y1 + y2 ≤ 3
−y1 + 2y2 ≤ 2
2y1 + 4y2 ≤ 8
y1, y2 ≥ 0

The theory of LP duality (sometimes referred to as the Strong Duality Theorem) says that if the
primal LP P is bounded and feasible, then the value of the primal LP equals the value of the dual
LP.



1.1 Weak Duality

Weak duality makes only the claim that the value of the primal LP is at least the value of the dual
LP. Consider the primal P and its dual D:

P D
min cTx max bT y
s.t. Ax ≥ b s.t. AT y ≤ c

x ≥ 0 y ≥ 0

Suppose that x∗ is an optimal solution to P and y∗ is an optimal solution to D. We need only
show that cTx∗ ≥ bT y∗.

cTx∗ ≥ (AT y∗)Tx∗

= y∗TAx∗

bT y∗ ≤ x∗TAT y∗

= (y∗TAx∗)T

Noting that the last terms in the two equations are identical (since the transpose of a scalar is the
scalar itself) leads to the desired conclusion.

1.2 Strong Duality

Lemma 1 (Farkas Lemma). For any m × n real matrix A′, m × 1 vector b′, exactly one of the
following two holds:

1. There exists an x′ such that A′x′ ≥ b′.

2. There exists y′ ≥ 0 such that A′T y′ = 0 and b′T y′ > 0.

Proof. We consider the easy direction first. Suppose both the conditions hold. Then, we have the
contradiction

0 < b′T y′ ≤ x′TA′T y′ ≤ 0.

Suppose there is no x′ such that A′x′ ≥ b′. Then, consider the convex and closed body K =
{A′x′ − s : x′ ∈ <n, s ∈ <m, s ≥ 0}. Since b′ does not belong to this body, there is a hyperplane
separating b′ from K. Hence, there exists y′ 6= 0 such that y′T b′ > 0 and y′TA′x′ ≤ y′T s for every
x′ ∈ <n, s ∈ <m, s ≥ 0. By setting s to 0 and considering different values of x′, we can obtain
A′T y′ = 0.

Farkas’ Lemma can be used to prove the strong duality theorem for LPs. Let the primal and dual
LPs be the following.

P : min cTx subject to Ax ≥ b;x ≥ 0
D : max bT y subject to AT y ≤ c; y ≥ 0
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Theorem 1. If the primal P and dual D are both feasible, then the optimal value z∗ of the primal
equals the optimal value w∗ of the dual.

Proof. Let x∗ and y∗ denote, respectively, optimal solutions for P and D. By weak duality, z∗ ≥ w∗.
We now show that z∗ ≤ w∗. The proof is by contradiction. If z∗ > w∗, then there does not exist a
y such that

AT y ≤ c; y ≥ 0; bT y ≥ z∗.

We apply Farkas Lemma with the following substitutions.

A′ =

 −ATI
bT

 b′ =

 −c0
z∗

 x′ = y; y′ =

 x
δ
λ

 .

It follows from Farkas Lemma that there exists an y′ of the above form such that y′ ≥ 0, A′T y′ = 0,
and b′T y′ > 0. This implies that there exists an x ≥ 0, λ ≥ 0 such that Ax = λb and cTx < λz∗.

We consider two cases. First, if λ = 0, then we have found an x ≥ 0 such that Ax = 0 and cTx < 0.
This implies that x∗+ x is a feasible solution with cT (x∗+ x) < cTx∗, contradicting the optimality
of x∗. Second, if λ > 0, we can assume by scaling that λ = 1, which implies that x satisfies x ≥ 0,
Ax ≥ b, and cTx < z∗, again contradicting the optimality of x∗.

2 A combinatorial greedy algorithm UFL with a dual-fitting anal-
ysis

We present a purely combinatorial greedy algorithm for UFL – Algorithm 1, and show that it
achieves a 3-approximation, using a dual-fitting analysis. This algorithm is due to Mettu-Plaxton;
their analysis and proof of the 3-approximation is more direct.

The integer linear program for the problem is as follows:

min
∑
j∈F

fj × yj +
∑
i∈V

xij × cij

s.t. xij ≤ yj ∀i ∈ V, j ∈ F∑
j

xij ≥ 1 ∀i ∈ V

xij , yj ∈ {0, 1} ∀i ∈ V, j ∈ F

The LP-relaxation of this program gives:

min
∑
j∈F

fj × yj +
∑
i∈V

xij × cij

s.t. xij ≤ yj ∀i ∈ V, j ∈ F
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Algorithm 1: Mettu-Plaxton Approach

1. for each facility j ∈ F do
define:
rj = r, r > 0 at which

∑
i:cij≤r(r − cij) = fj

Bj = {i ∈ V |cij ≤ rj}
2. Sort rj in the non-decreasing order. WLOG, assume r1 ≤ r2 ≤ · · · ≤ rm.
3. Let F ′ := {r1, r2, · · · rm} s.t. the index-set of F ′ represents the facilities. Call the set I[F ′].
4. Let j := 1, and X := ∅.
5. for facility j ∈ I[F ′] in order do

Set X = X ∪ {j}.
let Mj = {rl ∈ F ′|cjl ≤ 2× rl}.
Set F ′ = F ′ \Mj with keeping the sorted order among the remaining elements as before.
Note: j ∈Mj vacuously.
Re-label the elements in the new F ′ starting from index 1. (new I[F ′] ⊂ old I[F ′].)
If F ′ = ∅, break.

6. Assign each client to the nearest facility in X. Let σ : V → X denote the mapping.
7. Output X and σ.

∑
j

xij ≥ 1 ∀i ∈ V

xij , yj ≥ 0 ∀i ∈ V, j ∈ F

The dual program is:

max
∑
i∈V

vi

s.t.
∑
i∈V

wij ≤ fj ∀j ∈ F

vi − wij ≤ cij ∀i ∈ V, j ∈ F

wij , vi ≥ 0 ∀i ∈ V, j ∈ F

Theorem 2. The running time for Algorithm 1 is polynomial in the size of input.

Proof. Left to the reader.

Now, we obtain a dual solution from Algorithm 1 as follows:

1. For each client i ∈ V , facility j ∈ X, set

wij =
{
rj − cij if i ∈ Bj
0 otherwise
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2. For each client i ∈ V , set vi = minj(wij + cij).

Checking the feasibility of the dual solution:

1. For each facility j ∈ X,
∑

i∈Bj (rj − cij) = fj .

2. For each client i ∈ V , facility k ∈ X, vi = minj(wij + cij) ≤ (wik + cik).

Consider the Total Cost of the solution:

TotalCost = (a)
∑
j∈X

∑
i∈Bj

(wij + cij) + (b)
∑

i/∈Bj |j∈X

ciσ(i).

Notice that the clients that contribute to (a) are disjoint from the clients that contribute to (b).
Now, consider any client i ∈ V . Let vi = wik + cik, where k ∈ F is some facility that minimizes the
client contribution. Let cost(i) denote the cost for the client i in our solution.

Theorem 3. ∀i ∈ V , cost(i) ≤ 3× vi.

Proof. We will prove this by considering all cases. [From Algorithm 1] For all cases, we have:
∃p ∈ X s.t. rp ≤ rk (p could be equal to k) and cpk ≤ 2× rk .

1. Suppose, ∃j ∈ X s.t. i ∈ Bj .

(a) If j = p, then cost(i) = (rj − cij) + cij = rj ≤ rk. Now, we show that vi ≥ rk.
There are two possibilities:

• If i ∈ Bk, then vi = (rk − cik) + cik = rk. Hence, vi ≥ rk.
• If i /∈ Bk, then vi = cik ≥ rk. Hence, vi ≥ rk.

In either of the two sub-cases, we see that vi ≥ rk .

(b) If j 6= p, then cost(i) = (rj − cij) + cij = rj ≤1 cip ≤2 cik + ckp ≤3 cik + 2× rk.
The first inequality is due to the following argument. If rj ≤ rp, then the inequality
is straightforward since rj ≤ rp ≤ cip. Now consider the case rj > rp; in this case,
if rj > cip, then 2rj > cij + cip ≥ cjp, implying that j should not be included in X.
The second inequality follows from triangle inequality induced by metric c, and the final
inequality follows from the hypothesis.
We are left to show 3× vi ≥ cik + 2× rk for case (b) to satisfy the theorem. There are
two possibilities:

• If i ∈ Bk, then vi = rk ≥ cik. Therefore, 3× vi = 3× rk ≥ cik + 2× rk.
• If i /∈ Bk, then vi = cik ≥ rk. Therefore, 3× vi = 3× cik ≥ cik + 2× rk.

The claim holds true for both cases.

Hence, for both sub-cases (a) and (b), the inequality, cost(i) ≤ 3× vi holds.

2. Suppose i /∈ Bj for any j ∈ X. Then cost(i) = ciσ(i) ≤ cip since p ∈ X. It follows that
cost(i) ≤ cip ≤ 3× vi from the similar argument as that of case 1(b).
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Now, the total cost of our solution is given by TotalCost =
∑

i cost(i) ≤
∑

i(3× vi) = 3×
∑

i vi.
Let OPT denote the optimal primal integral solution.

Theorem 4. TotalCost ≤ 3×OPT .

Proof. Let cost(v, w) represent the dual feasible solution that we achieve from the algorithm 1.
By weak-duality, we know that a feasible dual solution gives a lower bound to the optimal primal
solution, which is, in turn, a lower bound for optimal primal integral solution. Hence,

TotalCost ≤ 3× cost(v, w) ≤ 3× LPDual ≤ 3× LPPrimal ≤ 3×OPT.
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