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Lecture Outline:

• Chernoff & Chernoff-Hoeffding Bounds

• Symmetric Lovasz Local Lemma

In this lecture, we study Chernoff bounds, and compare them with the other tail bounds we
have seen previously. The statement of the related Chernoff-Hoeffding bound is also included for
completeness. We then begin studying the Lovasz Local Lemma, which is used to bound the
probability that the union of several partially dependent events does not occur, and see the proof
of the symmetric version.

1 Chernoff Bounds

As with the tail bounds we saw in the last lecture, Chernoff’s formula is used to bound the prob-
ability that a random variable deviates from its mean. For this bound, however, the random
variable under consideration will have a very specific structure. Let X1, . . . , Xn be independent
{0, 1}-valued random variables, and define pi = Pr[Xi = 1] = E[Xi]. Then, X =

∑
iXi will be the

random variable we study. Note that E[X] = E [
∑

iXi] =
∑

i pi by linearity of expectations; we
will denote this value by µ.

Given this setup, the quantity we wish to upper bound is Pr[X ≥ (1 + δ)µ]. Chernoff’s formula
will give a bound which is exponentially better than either Markov or Chebyshev by considering
the (weighted) sum of all moments of X. To see how this can be done, recall the Taylor expansion
of eX :

eX =
∞∑
k=0

Xk

k!
= 1 +X +

X2

2!
+
X3

3!
+ · · ·

So, if we define the function fCher(X) = etX , for some t to be chosen later, and apply Markov’s
inequality to Pr[fCher(X) ≥ fCher((1 + δ)µ)], we can hope for an improvement.

Theorem 1 (Chernoff Bound). Let X be the random variable defined above, and let µ = E[X].
Then for any δ > 0:

Pr[X ≥ (1 + δ)µ] ≤ e−µ((1+δ) ln(1+δ)−δ)

Proof. For any fixed t > 0, etX is an increasing function in X. Therefore, X ≥ (1 + δ)µ if and
only if etX ≥ et(1+δ)µ, and so Pr[X ≥ (1 + δ)µ] = Pr[etX ≥ et(1+δ)µ]. We will bound the latter
probability.



Pr[etX ≥ et(1+δ)µ] ≤ 1
et(1+δ)µ

· E[et
P
iXi ] Markov’s inequality

= 1
et(1+δ)µ

· E[
∏
i e
tXi ]

= 1
et(1+δ)µ

·
∏
i E[etXi ] independence of the Xi

= 1
et(1+δ)µ

·
∏
i[1 + pi(et − 1)]

≤ 1
et(1+δ)µ

·
∏
i e
pi(e

t−1) 1 + x ≤ ex ∀x ∈ R

= 1
et(1+δ)µ

· eµ(et−1)
∑

i pi = µ

= e−µ(t(1+δ)+1−et)

We now want to choose t to maximize t(1+δ)+1−et. Setting the derivative equal to 0 and solving
for t gives t = ln(1 + δ). Plugging this value into the last line gives the stated bound.

Before comparing this with the other tail bounds, it will be helpful to simplify the exponent.

Lemma 1. For 0 ≤ δ ≤ 1, (1 + δ) ln(1 + δ)− δ ≥ δ2/2.

Proof. The trick here is to use the Taylor expansion of ln(1 + δ):

ln(1 + δ) =
∞∑
k=1

(−1)k−1 δ
k

k
= δ − δ2

2
+
δ3

3
− δ4

4
+ · · ·

(Note that this only holds for δ ∈ (−1, 1], which is enough for our purposes.) Plugging this in and
combining like terms gives

(1 + δ) ln(1 + δ) = δ +
∞∑
k=2

(−1)k
δk

k(k − 1)
= δ +

δ2

2
− δ3

6
+ · · ·

Finally, dropping all but the first two terms gives the lemma.

So, the Chernoff bound can be restated as Pr[X ≥ (1 + δ)µ] ≤ e−µδ
2/2 for δ ∈ [0, 1]. Returning

to our example from last lecture (δ = p1 = · · · = pn = 1
2), we see that the Chernoff bound does

indeed give a probability which vanishes exponentially with n: Pr[X ≥ 3
4n] ≤ e−n/16. In contrast,

Markov’s and Chebyshev’s inequalities gave bounds of 2
3 and 4

n , respectively.

A related inequality is known as the Chernoff-Hoeffding bound. This can be used to bound the
absolute, rather than the relative, error in the case when each Xi is an independent real-valued
random variable distributed (not necessarily uniformly) in the range [0, 1].

Theorem 2 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn ∈ [0, 1] be independent random variables,
and let X =

∑
iXi. Then, for any δ such that 0 ≤ δ < E[X]/n:

Pr
[
X − E[X]

n
≥ δ
]
≤ e−2nδ2

Chernoff and Chernoff-Hoeffding bounds were first given in [2] and [4].
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2 Lovasz Local Lemma

In designing algorithms, one often wants to bound the probability that the union of several events
does not happen. Formally, let E1, . . . , En be a collection of “bad” events defined over some sample
space, and assume that ∀i : Pr[Ei] ≤ p < 1 for some fixed p. One question we can ask is, “Does

there exist a point in the sample space which is outside all of these events?”, i.e. Pr
[∧

iEi
] ?
> 0.

Our ability to answer this question depends largely on what we know about the dependence be-
tween the events.

If the events are completely independent, then Pr
[∧

iEi
]

=
∏
i Pr[Ei ] ≥ (1−p)n, which is greater

than 0 for all p < 1. If we know nothing about the dependencies between events, the best we can
do is the so-called union bound: Pr

[∧
iEi

]
= 1 − Pr[

∨
iEi] ≥ 1 −

∑
i Pr[Ei] ≥ 1 − pn. This is

greater than 0 only for p < 1
n . The Lovasz Local Lemma (LLL) gives a non-trivial answer to our

question even with only limited information on the dependencies between events.

Theorem 3 (LLL (Symmetric)). Let E1, . . . , En be a collection of events such that ∀i : Pr[Ei] ≤ p.
Suppose further that each event is dependent on at most d other events, and that e · p · (d+ 1) ≤ 1.
Then, Pr

[∧
iEi

]
> 0.

This is referred to as the symmetric LLL because the probability of each event is bounded by the
same value. The only requirement is that the number of dependencies for each event is bounded;
notably, no assumptions about the underlying structure of the dependencies are made. If we instead
made the much stronger assumption that the events can be grouped into n/(d+1) blocks such that
there are no dependencies between blocks, then we could apply the union bound on each block.
(Here, assume w.l.o.g. that the blocks are {E1, . . . , Ed+1}, {Ed+2, . . . , E2d+2}, . . . , {En−d, . . . , En}.)

Pr

[∧
i

Ei

]
=

n
d+1∏
i=1

Pr

 i(d+1)∧
j=i(d+1)−d

Ej

 =

n
d+1∏
i=1

1− Pr

 i(d+1)∨
j=i(d+1)−d

Ej

 ≥ (1− p(d+ 1))
n
d+1

This quantity is greater than 0 for p < 1/(d+1). By comparison, Theorem 3 needs p ≤ 1/(e(d+1)),
only a constant factor loss. We will prove Theorem 3 via the following lemma.

Lemma 2. Assume the conditions of Theorem 3. Then, ∀T ⊆ {E1, . . . , En} and ∀Ei:

Pr

Ei
∣∣∣∣∣ ∧
Ej∈T

Ej

 ≤ ep
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Proof of Theorem 3 assuming Lemma 2.

Pr[
∧
iEi] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1

∧
E2] · . . . · Pr[En |

∧
i<nEi]

≥ (1− ep)n

≥
(

1− 1
d+1

)n
> 0

Proof of Lemma 2. The proof is by induction on the size of T . For the base case |T | = 0, the
lemma holds because Pr[Ei] ≤ p < ep. Assume it holds on all sets up to size k − 1. Fix T to be a
set of size k and fix an event Ei. Let S ⊆ T be defined such that Ei depends on all events in S and
no events in T \ S. Assume that |S| ≥ 1 (i.e. that Ei depends on some event in T ); the lemma is
trivially true otherwise. The chain rule for probabilities, and the fact that S ∪ (T \ S) = T , gives

Pr

Ei ∧ ∧
Ej∈S

Ej

∣∣∣∣∣ ∧
E`∈T\S

E`

 = Pr

 ∧
Ej∈S

Ej

∣∣∣∣∣ ∧
E`∈T\S

E`

 · Pr

Ei
∣∣∣∣∣ ∧
Ej∈T

Ej


This can be rewritten as

Pr

Ei
∣∣∣∣∣ ∧
Ej∈T

Ej

 =

Pr

[
Ei ∧

∧
Ej∈S Ej

∣∣∣∣∣ ∧E`∈T\S E`

]

Pr

[∧
Ej∈S Ej

∣∣∣∣∣ ∧E`∈T\S E`

]
Note that the left hand side is the probability we are trying to bound. We will bound each half of
the fraction on the right hand side separately. For the numerator, we have

Pr

Ei ∧ ∧
Ej∈S

Ej

∣∣∣∣∣ ∧
E`∈T\S

E`

 ≤ Pr

Ei
∣∣∣∣∣ ∧
E`∈T\S

E`

 ≤ p
The second inequality follows from the fact that Ei is independent of the events in T \S. To bound
the denominator, denote S = {Ej1 , . . . , Ej|S|}. Then,

Pr

[∧
Ej∈S Ej

∣∣∣∣∣ ∧E`∈T\S E`

]
= Pr

[
Ej1 |

∧
E`∈T\S E`

]
· Pr

[
Ej2 | Ej1 ∧

∧
E`∈T\S E`

]
· . . .

≥ (1− ep)d

≥
(

1− 1
d+1

)d
≥ 1/e
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The second line comes from the fact that |S| ≤ d, and by the inductive hypothesis (there are at
most k − 1 events on the r.h.s. of each conditional probability by our assumption that |S| ≥ 1
and |T | = k). The last line comes from the fact that the sequence

{(
1− 1

n+1

)n}
n≥1

approaches

1/e from above. Combining the bounds on the numerator and the denominator completes the
proof.

The Lovasz Local Lemma was first proved in [3]. The textbook by Alon & Spencer [1] is a good
reference for this and related material.
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