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Outline:

• Principal component Analysis

• Singular Value Decomposition

• The Power Iteration Method

• High-Dimensional Spaces: The Unit Ball

In this pair of lectures, we learn about the geometry of high-dimensional spaces and ways to address the
complexity of high-dimensional data. In practice, many data sets that we would like to analyze are high-
dimensional, which makes them difficult to analyze and reason about. For instance, we can visualize two-
and three-dimensional data nicely, but it is very challenging to get an intuitive sense of data in higher
dimensions. Furthermore, many data sets we work involve dimensions ranging in the thousands and more.
Many geometric algorithms have running times exponential in the number of dimensions, rendering them
unusable for high-dimensional spaces. One approach to address this is to embed or project the given data into
a low-dimensional space, while having essentially the same features or desirable properties of the original
data set. Of course, this is not always possible, but it turns out that when the underlying data satisfies some
natural conditions that arise in practice, one can implement such dimensionality reduction techniques.

We begin by introducing two closely related methods from linear algebra—Principal Component Analysis
and Singular Value Decomposition—that achieve part of this dimensionality reduction goal. We explore
the relationship between these two approaches, and how they are related to the eigenvalues of the matrix
representing the given data. We also present a randomized algorithm for approximating the top eigenvalue
and associated eigenvector. Along the way, we explore the geometry of high dimensions and the properties
of a unit vector chosen randomly in a high-dimensional Euclidean space.

The presentation of the material in this pair of lectures is heavily drawn from Chapters 2 and 3 of the text
by Blum, Hopcroft, and Kannan [BHK20] and lecture notes of Roughgarden and Valiant [RV16b, RV16a].

1 Principal Component Analysis

Given a set of n points in d-dimensional space, the Principal Component Analysis (PCA) aims to find the
best k-dimensional subspace (for k ≪ d) that best captures the features of the set of points. Let us assume

that we have n points a1, a2, . . . , an in Rd. We represent these points using an n×d matrix A =


a1
a2
...
an

. For

convenience, throughout out study, we will assume that the mean of the point set is the origin; if this is not
the case, then we can apply a simple translation to the points to make this assumption true. The goal of PCA



is to find a k dimensional subspace containing the origin that minimizes the sum of squares of perpendicular
distances of each point to the subspace.

For any point, set ti as the distance of point i to the subspace, and si be the projection length. By Pythagoras
theorem, we have:

min
n∑

i=1

t2i = max
n∑

i=1

(t2i − a2i ) = max
n∑

i=1

s2i .

This, the objective of minimizing the sum of the squares of perpendicular distances of the points to the
subspace is equivalent to that of maximizing the sum of the squares of the lengths of the projection of the
points to the subspace. This implies that we want to find a (unit) vector v of size d that maximizes vTATAv.

Let X = ATA, note that X is a symmetric matrix and by lemma 1 we can write it in the form of QTDQ.

Lemma 1. Any symmetric matrix X of size d× d can be written as QTDQ, where D is a diagonal matrix
with eigenvalues of X , and Q is the d× d matrix consisting of the d eigenvectors of X .

1.1 1-dimensional subspace

We first consider the case where k = 1. So, we want the line through the origin such that sum of the squares
of the projections of the points to the line is maximized. Let us first solve the problem for a special case

where X is a diagonal matrix and λ1 ≥ · · · ≥ λd are the eigenvalues of A, v =


v1
v2
...
vn

, we have:

vTDv =
d∑

i=1

λiv
2
i .

Since v is a unit vector,
∑

i v
2
i = 1. Therefore, vTDv is maximized when v1 = 1 and vi = 0 for i > 1.

For general X , we can write Q =


. . . u1 . . .
. . . u2 . . .

...
. . . ud . . .

. Note that ui is the ith eigenvector of X , then we have:

vTQTDQv =
[
u1 · v u2 · v · · · ud · v

]
D


u1 · v
u2 · v

...
ud · v

 =

d∑
i=1

λi(ui · v)2.

We thus obtain that if v = u1, vTQTDQv = λ1|u1|2 = λ1. Furthermore, for any v, we have ui ·v ≤ |ui||v|.
So, we have

vTQTDQv =

d∑
i=1

λi(ui · v)2 ≤
d∑

i=1

λi|ui|2|v|2 =
d∑

i=1

λi|ui|2 ≤ λ1.
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We have thus derived that line that maximizes the sum of the squares of the projections to the line is given
by the first eigenvector of X .

1.2 Extending to k-dimensional subspaces

We now consider the case k = 2. Again, let us assume that X is a diagonal matrix. Our goal is to find
vectors v and w to maximize vTDv + wTDw =

∑d
i=1(v

2
i + w2

i )λi, subject to the condition that w is
orthogonal to v. In this case we can prove that the objective is maximized if we set v1 = 1 and vi = 0 for
i > 1 and w1 = 0, w2 = 1 and wi = 0 for i > 2. In general, for k-dimensional subspaces, we have the
following theorem.

Theorem 1. The k-dimensional subspace that maximizes the sum of projection length squares is formed by
the top k eigenvectors of ATA.

2 Singular Value Decomposition

An alternative way to answer the above question is to define a greedy iterative algorithm that finds vectors
that maximize the sum of the projection length squares in orthogonal directions. Let v1 be defined as follows.

v1 = argmax
v

|Av|

For i > 1, we define
vi = arg max

vi⊥(v1,...,vi−1)|vi|=1
|Av|.

We stop the iterations at index r where maxv⊥(v1,...,vr) |Av| = 0. We call v1, . . . , vr left singular vectors
of A. We define the singular values σi = |Avi| for all i, and finally we define the left singular values
ui =

1
σi
Avi.

Theorem 2. The matrix A satisfies the following property.

A =

r∑
i=1

σiuiv
T
i .

This decomposition is called singular value decomposition and can be rewritten as A = USV T where

UT =


. . . u1 . . .
. . . u2 . . .

...
. . . ur . . .

 , V T =


. . . vT1 . . .
. . . vT2 . . .

...
. . . vTr . . .


and S is a diagonal matrix with σi as the i-th diagonal.

Proof. We prove the above equality by showing that for any vector x we have Ax is the same as USV Tx.
If x ⊥ {v1, v2, . . . , vr}, then we have vTi x = 0 resulting in USV Tx = 0. Note that by the greedy algorithm
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introduced to find the left singular vectors, we have Ax = 0. For any vector x that is not perpendicular to v,
we can write it as follows

x = α1v1 + · · ·+ αrvr,

by definition of singular values we know that Avi = σiui holds and therefore we can write

Ax =
r∑

i=1

αiσiui = USV TV α = USV Tx.

We now argue that SVD indeed yields the best fitting k-dimensional subspace.

Theorem 3. The first k vectors computed by the greedy algorithm defining the SVD yield a k-dimensional
subspace that maximizes the sum of squared projections of the matrix A to the subspace.

Proof. The proof is by induction on k. The case k = 1 follows from the definition of the first vector. We
now establish the induction step. Let Vi denote the i-dimensional subspace defined by the first i vectors v1
through vi. Suppose the claim is true for k − 1. So, Vk−1 is the (k − 1)-dimensional space that maximizes
the sum of squared projections of the matrix A to any (k− 1)-dimensional subspace. Suppose W is the best
k-dimensional subspace. We choose an orthonormal basic w1, w2, . . . , wk so that wk is perpendicular to v1
through vk−1. We can do this by projecting v1 through vk−1 to W , and then selecting wk perpendicular to
all these projections. Then, we obtain

|Aw1|2 + |Aw2|2 + . . .+ |Awk−1|2 ≤ |Av1|2 + |Av2|2 + . . .+ |Avk−1|2

because Vk−1 is the best k-dimensional subspace. Furthermore, among all vectors v orthogonal to v1 through
vk−1, vk maximizes |Av|2, so |Avk|2 ≥ |Awk|2. Thus, we have

|Aw1|2 + |Aw2|2 + . . .+ |Awk|2 ≤ |Av1|2 + |Av2|2 + . . .+ |Avk|2,

completing the induction step and the proof of the theorem.

3 Relation between PCA and SVD

Now, we explore the similarities of PCA and SVD, and how they both can be used to find a k-dimensional
subspace that maximizes the sum of square projections of a matrix A to the subspace.

Theorem 4. The top k-eigenvectors of ATA form the k-dimensional subspace that that maximizes the sum
of square projections of a matrix A to the subspace. Furthermore, this is the same as the top k right singular
vectors of A created by SVD.

Proof. We sketched the argument for the first statement in our analysis of PCA. By our analysis above,
we have ATA = QDQT , and by SVD, we know how to decompose A, therefore here we have: ATA =
V STUTUSV T = V S2V T = QDQT . This implies that V = Q and also the eigenvalues of ATA are the
squares of the singular values: λi = σ2

i
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Note that both approaches above rely on determining the eigenvectors of a given matrix X . There are
many algorithms for calculating the eigenvectors, many of which rely on the power iteration method, a fast
randomized algorithm for finding the top eigenvector of a given matrix.

4 The Power Iteration Method

Here we introduce an algorithm to find the top eigenvectors of a given matrix X . Specifically, we present
a method for finding the top eigenvector, which can then be iteratively used to find other top eigenvectors.
Recall that the top eigenvector is the (unit) vector v that maximizes λ in the following

Xv = λv

So, our aim is to a vector in which X has the highest projection. Let λ1 ≥ · · · ≥ λn denote the eigenvalues
and v1, . . . , vn the corresponding eigenvectors. We pick a unit vector u0 =

∑n
i=1 αivi at random, and define

ut as follows:

ut =
Xtu0
|Xtu0|

.

Theorem 5. Suppose v1 is the top eigenvector for matrix A, then the following holds:

lim
t→∞

< ut, v1 >= 1

By the lemma below we prove the theorem 5 using the properties of a random unit vector.

Lemma 2. For a unit vector u0 =


α1

α2
...
αn

 chosen uniformly at random from the unit ball in n dimensions,

with probability at least 1
2 we have αi >

1
2
√
n

.

We now prove Theorem 5.

Proof. Let us first rewrite ut as follows:

ut =
Xtu0
|Xtu0|

=
Xt[

∑n
i=1 αiλ

t
ivi]

|
∑n

i=1 αiλt
ivi|

< ut, v1 >=
α1λ

t
1√∑n

i=1 α
2
iλ

2t
i

≥ α1λ
t
1√

α2
1λ

2t
1 + λ2t

2

By lemma 2 we have:
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α1λ
t
1√

α2
1λ

2t
1 + λ2t

2

=
α1λ

t
1

α1λt
1

√
1 +

λ2
2t

λt
1

1
α2
1

≥ 1− 1

2

(
λ2

λ1

)2t

· 4n

If λ2
λ1

< 1, setting t = log λ1
λ2

2n
ϵ we get that < ut, v1 > is at least 1− ϵ. Therefore, the number of iterations

is O(ln(λ1
λ2
n)). And the convergence occurs unless λ1 and λ2 are equal.

If λ1 and λ2 are well-separated, then the power iteration method essentially converges in logarithmic time.
We will not formally prove lemma 2, but introduce the basics of high-dimensional geometry that help us rea-
son about unit balls and spherical Gaussians, which are important concepts behind many modern algorithmic
techniques.

5 High-dimensional spaces

5.1 Ball

We define a ball of radius r in d-dimension as the union of points with absolute value less than r the radius
of the ball: B(r) = {x : |x| ≤ r}.

5.2 Volume

We define the volume of a high-dimension ball, as the number of unit cubes inside the ball. Using calculus,
one can derive the volume V (d) and surface area A(d) of a d-dimensional ball of unit radius (also referred
to as a unit ball) as follows.

V (d) =
2π

d
2

dΓ(d2)
A(d) =

2π
d
2

Γ(d2)
,

where the Gamma function Γ(x) is a generalization of the factorial function to non-integers: Γ(x) = (x −
1)Γ(x− 1),Γ(1) = Γ(2) = 1,Γ(12) =

√
π.

Theorem 6. For a ball of radius r in d-dimensions, the fraction of the volume that is present in the sub-ball
within radius (1− ε)r is at most e−εd.

Proof. For any d-dimension ball of radius r we have

vol(B((1− ϵ)r)) = (1− ϵ)dvol(B(r)) ≤ e−εdvol(B(r)).

Note that if ϵ = k
d we have

vol(B((1− ϵ)r)

vol(B(r))
= e−k
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.

This means the volume of a unit ball is concentrated in an annulus of width O(1/d) near the boundary.

The following theorem states that the volume of a unit ball is concentrated around the equator. We omit the
proof.

Theorem 7. For a unit ball in d-dimensions, at least e−
c2

2 fraction of volume of a unit ball has |x1| ≤ c√
d−1

.

The above theorem implies that if we set the north pole to be (1, 0, . . . , 0), most of the volume of the unit
ball is concentrated in the equator corresponding to this north pole. Note that this statement holds for every
coordinate. At the same time, we know that a significant volume of a unit ball in d-dimensions is on the
surface. Therefore, if a pick a random unit vector, it holds that the typical value for each coordinate is of
±O

(
1√
d

)
, which justifies Lemma 2.

Theorem 8. Suppose that we pick vectors x1, . . . , xn at random in R. With probability 1− 1
n we have the

following:

1. For any i, j ∈ {1, . . . , n}such that i ̸= j we have |xi · xj | ≤
√
6 lnn√
d−1

2. For any i ∈ {1, . . . , n} we have |xi| ≥ 1− 2 lnn
d

Proof. Here we calculate the above probabilities using theorem 7 and theorem 6.

1. Fix index i. We apply a rotation so that xi is the along the line from the origin to the North Pole.
Hence |xi · xj | is simply the magnitude of the projection of xj in one coordinate. By theorem 7, we
thus have Pr[|xi · xj | ≥

√
6 lnn√
d−1

] ≤ e−
6 lnn

2 = 1
n3 . Since there are at most n2/2 pairs, the probability

that the dot product for any pair is at least
√
6 lnn√
d−1

is at most 1/(2n).

2. If |xi| is less than 1 − 2 lnn
d , then it is within radius 1 − 2 lnn

d from the origin. By theorem 6, the
probability of this occurring is (

1− 2
lnn

d

)d

≤ e−2 lnn =
1

n2
.

Thus, the probability that any vector has length at most 1− 2 lnn
d is at most 1/n.
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