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This pair of lectures covers linear programming duality and its applications. We start by defining the dual
of a linear program, present complementary slackness conditions, and establish the easily proved fact of
weak duality. We then also present the main ingredients of the proof of strong duality. In the second
half of this document, we present applications of duality, including dual-fitting—a method for analyzing
approximation algorithms—and the primal-dual method—a method for designing algorithms (which are
often combinatorial) using the structure of primal and dual LPs. Some useful references for the material
covered in this lecture on the geometry of LP are [Goe94, WS11].

1 LP Duality

Consider the following linear program, which we refer to as the primal LP:

min 3x1 + 2x2 + 8x3
s.t. x1 − x2 + 2x3 ≥ 5

x1 + 2x2 + 4x3 ≥ 10
x1, x2, x3 ≥ 0

Let OPTP be the optimal value. By definition OPTP ≥ 3x1 + 2x2 + 8x3, for every x1, x2, x3 ∈ P , where
P denotes the polytope of feasible solutions, i.e. the set of values x1, x2, and x3 that satisfy the three
ineqaulities. By adding the first two inequalities, we arrive at

2x1 + x2 + 6x3 ≥ 15.

Since x1, x2, x3 ≥ 0, we get:

OPTP ≥ 3x1 + 2x2 + 8x3 ≥ 2x1 + x2 + 6x3 ≥ 15.

We can use another linear program to find the largest possible lowerbound one can obtain for OPTP in such
a manner, i.e. by using linear combinations of the constraints on x:

max 5y1 + 10y2
s.t. y1 + y2 ≤ 3

−y1 + 2y2 ≤ 2
2y1 + 4y2 ≤ 8

y1, y2 ≥ 0



This is called the dual LP, and we use OPTD to denote its optimal value. Here yi denotes the coefficient of
the i-th constraint in the linear combination. It is natural to ask how tight this lowerbound is. The strong
duality theorem states that if the primal LP is feasible and bounded, then the OPTD is exactly equal to OPTP.

1.1 Weak Duality

Weak duality states that OPTD ≤ OPTP. This is not surprising since we designed the dual LP to provide a
lowerbound for the primal LP. Let us define the primal and dual formally:

P : D :
min cTx max bT y
s.t. Ax ≥ b s.t. AT y ≤ c

x ≥ 0 y ≥ 0

Let x and y be any feasible solutions to P and D. We show that cTx ≥ bT y:

cTx ≥ yTAx ≥ yT b.

Where the first inequality follows from x ≥ 0 and AT y ≤ c, and the second inequality follows from y ≥ 0
and Ax ≥ b.

1.2 Strong Duality

We now establish the strong duality for linear programs. A crucial ingredient of the proof is Farkas Lemma,
which is presented in different incarnations. The lemma essentially provides a certificate of infeasibility for
a set of linear inequalities. It uses a fact referred to as the Separating Hyperplane Theorem, which captures
the intuitive claim that for any convex and closed body K and a point x /∈ K, there is a hyperplane that
separates K from x. We will use the Separating Hyperplane Theorem without proof.

Lemma 1 (Farkas Lemma). For any m × n real matrix A′, m × 1 vector b′, exactly one of the following
two holds:

1. There exists an x′ such that A′x′ ≥ b′.

2. There exists y′ ≥ 0 such that A′T y′ = 0 and b′T y′ > 0.

Proof. We consider the easy direction first. Suppose both the conditions hold. Then, we have the contradic-
tion

0 < b′T y′ ≤ x′TA′T y′ ≤ 0.

Suppose there is no x′ such that A′x′ ≥ b′. Then, consider the convex and closed body K = {A′x′ − s :
x′ ∈ ℜn, s ∈ ℜm, s ≥ 0}. We first note that b′ does not belong to this body, since otherwise there exist x′,
s ≥ 0 such that A′x′ − s = b′, implying that A′x′ ≥ b′, contradicting our assumption. Therefore, there is
a hyperplane separating b′ from K. That is, there exists y′ ̸= 0 such that y′T b′ > 0 and y′TA′x′ ≤ y′T s
for every x′ ∈ ℜn, s ∈ ℜm, s ≥ 0. By setting s to 0 and considering different values of x′ (since the claim
holds for all x′ ∈ ℜn, we can obtain A′T y′ = 0.
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Farkas’ Lemma can be used to prove the strong duality theorem for LPs. Let the primal and dual LPs be the
following.

P : min cTx subject to Ax ≥ b;x ≥ 0

D : max bT y subject to AT y ≤ c; y ≥ 0

Theorem 1. If the primal P and dual D are both feasible, then the optimal value z∗ of the primal equals the
optimal value w∗ of the dual.

Proof. Let x∗ and y∗ denote, respectively, optimal solutions for P and D. By weak duality, z∗ ≥ w∗. We
now show that z∗ ≤ w∗. The proof is by contradiction. If z∗ > w∗, then there does not exist a y such that

AT y ≤ c; y ≥ 0; bT y ≥ z∗.

We apply Farkas Lemma with the following substitutions.

A′ =

 −AT

I
bT

 b′ =

 −c
0
z∗

 x′ = y; y′ =

 x
δ
λ

 .

It follows from Farkas Lemma that there exists an y′ of the above form such that y′ ≥ 0, A′T y′ = 0, and
b′T y′ > 0. This implies that there exists an x ≥ 0, λ ≥ 0 such that Ax = λb and cTx < λz∗.

We consider two cases. First, if λ = 0, then we have found an x ≥ 0 such that Ax = 0 and cTx < 0.
This implies that x∗ + x is a feasible solution with cT (x∗ + x) < cTx∗, contradicting the optimality of x∗.
Second, if λ > 0, we can assume by scaling x appropriately that λ = 1, which implies that x satisfies x ≥ 0,
Ax ≥ b, and cTx < z∗, again contradicting the optimality of x∗.

1.3 Max-Flow Min-Cut Theorem

As an example, let us apply the concept of duality to the max-flow problem. Given two vertices s and t, the
source and the sink, the goal is to find a flow over the edges such that for every vertex except s and t the
incoming and outgoing flow are equal, each edge (u, v) has flow at most c(u, v), and the flow going from s
to t is maximized. Below is a natural LP that expresses this problem, we use δ(u) to denote the neighbors
of u, and variable f(u, v) to represent the flow going from u to v.

max
∑

v∈δ(s) f(u, v)

s.t.
∑

u∈δ(v) f(u, v) =
∑

u∈δ(v) f(v, u) ∀v ∈ V

f(u, v) ≤ c(u, v)
f(u, v) ≥ 0

While this perfectly formulates the max-flow problem, working with the dual can be hard. Instead, we use
another linear program that sends flows over paths and we obtain the dual. We use P to denote the set of s-t
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paths:

P : D :
max

∑
p∈P xp min

∑
e ye · ce

s.t.
∑

p∋e xp ≤ ce ∀e ∈ E s.t.
∑

e∈p ye ≥ 1 ∀p ∈ P
xp ≥ 0 ye ≥ 0

Now, we study the dual program. First, notice that if y was restricted to have 0-1 values, then the resulting
integer program would clearly formulate the min-cut problem, where ye = 1 denotes that e is in the cut.
One can also prove that the relaxed LP where y can take any nonnegative value (i.e. D above) is defined
over an integral polytope (the proof is nontrivial). This would imply that OPTD is exactly equal to the cost
of min-cut. Then, strong duality implies that max-flow is equal to min-cut, while weak duality only implies
that max-flow is at most as large as min-cut.

2 Dual Fitting

Generally, duality can be used to analyze approximation algorithms as follows. Let us say we have a mini-
mization problem with optimal value OPT. We then obtain a primal LP which is a relaxation of our problem,
i.e. OPT ≥ OPTP. Then, we obtain the dual LP and weak duality implies OPTP ≥ OPTD. Consequently, if
we prove that our algorithm’s solution, ALG, satisfies ALG ≤ α ·OPTD, we can conclude that our algorithm
is an α-approximation. Because:

ALG ≤ α · OPTD ≤ α · OPTP ≤ α · OPT.

Dual fitting is a strategy where one obtains a solution to the problem along with a corresponding set of
values y. The values y are defined in the same domain as the dual variables. The algorithm’s solution has
cost bT y, where bT y is the objective function of the dual program. However, y is not necessarily feasible in
the dual program. A feasible solution y′ is then derived from y such that α · bT y′ ≥ bT y, for some α ≥ 1 (y
is fitted to the dual program). This implies that the solution is an α approximation as follows:

ALG = bT y ≤ α · bT y′ ≤ α · OPTD ≤ α · OPTP ≤ α · OPT.

2.1 Set Cover

As an example, we consider the set cover problem. Given a universe of elements and U , a collection of
subsets S, and a cost function c over S, the goal is to choose a subcollection S of S that covers U (i.e.⋃

s∈S s = U) and the cost of S is minimized.

First, we give an algorithm. The algorithm starts with the empty collection, and in every step, it adds a set
until all elements are covered. Let us say that the algorithm has so far picked a collection S. For a set s ∈ S,
its density is defined as its cost divided by the number of new elements it covers, that is:

c(s)

# elements in s not covered by S
.
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The algorithm picks the set s with minimum density in each step, breaking ties arbitrarily.

To analyze the algorithm we obtain the primal and dual LPs:

P : D :
min

∑
s∈S c(s) · xs max

∑
u∈U yu

s.t.
∑

s∋u xs ≥ 1 ∀u ∈ U s.t.
∑

u∈s yu ≤ c(s) ∀s ∈ S
xs ≥ 0 yu ≥ 0

Note that restricting x to 0-1 values would exactly formulate the problem, therefore OPT ≥ OPTP. We
provide a set of values y that has the same cost as our algorithm’s solution. When a set s is added to the
collection and has density d at the time. we let yu = d for all newly covered elements u. This way, the sum
of yu’s grows by c(s), and when the algorithm terminates,

∑
u∈U yu is equal to the cost of the collection.

To complete the analysis, we need to show 1
αy is feasible in the dual LP for some (hopefully small) value

α ≥ 1. Take any set s ∈ S , we consider the left-hand side in the dual constraint corresponding to s, i.e. the
left-hand side of ∑

u∈s
yu ≤ c(s).

Let u1, u2 . . . , uk be the elements of s in the order they were covered by the algorithm (breaking ties arbi-
trarily). Take any of these elements ui. At the time ui is covered, s has at least k− i+1 uncovered elements.
Hence, it has density at most c(s)

k−i+1 . Since the algorithm picks the set with the lowest density, the chosen

set that covers ui must have density at most c(s)
k−i+1 . Therefore, it holds that yui ≤

c(s)
k−i+1 . Thus we have:

∑
u∈s

yu ≤
k∑

i=1

c(s)

k − i+ 1
= c(s) ·H(k) = c(s) ·Θ(ln |s|).

Therefore, if we let α = Ω(ln |s|) the dual constraint corresponding to s is satisfied, and if we let α =
Θ(lnn) all the constraints are satisfied, i.e. 1

αy is dual-feasible. Following the discussion in the beginning
of this section, our algorithm has Θ(lnn) approximation ratio.

3 The Primal-Dual Scheme

Primal-dual algorithms are a powerful class of optimization techniques based on LP-duality. Given an
optimization problem and the primal and dual LPs, a primal-dual algorithm operates roughly as follows.
The algorithm starts with an infeasible solution x to the primal LP, and a suboptimal (but feasible) solution
y to the dual LP. In each step, changes are made so that x moves closer to being feasible and y moves closer
to being optimal. The art lies in how exactly these changes are made. In the end, the algorithm is analyzed
by looking at the relations between x and y. One way to do so is by using complementary slackness.
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3.1 Complementary Slackness

Definition 1. Given the following primal and dual linear programs

P : D :
min cTx max bT y
s.t. Ax ≥ b s.t. AT y ≤ c

x ≥ 0 y ≥ 0

two feasible solutions x and y satisfy complementary slackness if:

1. ∀i : xi > 0 =⇒ (AT )iy = ci, and

2. ∀j : yj > 0 =⇒ Ajx = bj .

Simply put, if a variable takes a positive value, then the corresponding inequality must be tight. Alternatively,
this can be stated as (cT − yTA)x = 0 and yT (Ax− b) = 0.

Theorem 2. If feasible solutions x and y satisfy complementary slackness, then x is primal-optimal and y
is dual-optimal.

Proof. Given that (cT −yTA)x = 0 and yT (Ax− b) = 0, we have cTx = yTAx = yT b. The claim follows
from weak duality.

Definition 2. Given the same primal and dual linear programs, two feasible solutions x and y satisfy relaxed
complementary slackness, with parameters α, β ≥ 1, if:

1. ∀i : xi > 0 =⇒ 1
αci ≤ (AT )iy ≤ ci, and

2. ∀j : yj > 0 =⇒ bj ≤ Ajx ≤ βbj .

Theorem 3. If feasible solutions x and y satisfy (α, β)-complementary slackness, then x is αβ-primal-
optimal and y is αβ-dual-optimal.

3.2 Shortest Path

Here we go over an application of complementary slackness. Consider the following linear program and its
dual for finding the shortest s-t path in a weighted directed graph (δ+(S) denotes the outgoing edges of a
vertex set S):

P : D :
min

∑
e cexe max

∑
S:s∈S,t/∈S yS

s.t.
∑

e∈δ+(S) xe ≥ 1 ∀S ⊆ V, s ∈ S, t /∈ S s.t.
∑

δ+(S)∋e yS ≤ ce ∀e ∈ E

x ≥ 0 y ≥ 0

Note that restricting x to have 0-1 values would result in an integer program that exactly formulates the
problem.
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We present a primal-dual algorithm. We start with infeasible primal solution x = 0 and feasible solution
y = 0. Until x is feasible, there is a s-t cut S, such that the corresponding constraint is violated by x.
Take the smallest such S. We increase the corresponding dual variable yS , until one of the dual constraints
becomes tight, say the dual constraint corresponding to e. Finally, we add e to the primal solution, i.e. we
let xe = 1 and proceed to the next step. Note that after this step, the constraint corresponding to S is no
longer violated by x. When x becomes feasible, the algorithm outputs the s-t path in the added edges (i.e.
the edges with xe = 1). The claim below implies that there is exactly one such path.

Claim 1. At any point, the subgraph of edges e with xe = 1, is a tree rooted at s.

Proof. We prove the claim using induction. At first the set of edges with xe = 1 is empty so the claim is
true. For the induction step, assume that so far the chosen edges form a tree T . If T contains the vertex t, x
is already feasible and we are done. Otherwise, note that the next S the algorithm chooses (to increase yS)
is exactly the set of vertices of T . Therefore, the edge that becomes tight and is added to the solution is an
edge from T to V \ T . This completes the induction step.

To analyze the algorithm, we make a final change to x. Given that the edges with xe = 1 form a tree, there
is exactly one path from s to t. We delete every edge e that is not on the s-t path, i.e. we let xe = 0. To
show this path is optimal, we prove that the complementary slackness property holds for x and y.

The first condition is trivial the way we designed the algorithm. We only let xe = 1, when the corresponding
constraint becomes tight. Afterwards, the yS’s are not decreased, and since the constraint is tight yS is not
increased for any other cut S that contains e, i.e. the constraint remains tight.

The second condition of complementary slackness follows from the fact that the edges with xe = 1 form a
path from s-t. Therefore, for any s-t cut S, the corresponding constraint is tight. This completes the proof
of optimality.

Remark 1. One can see that this primal-dual algorithm is equivalent to Dijkstra’s algorithm.

3.3 Set Cover Revisited

Here we present an application of relaxed complementary slackness. Consider, again, the primal and dual
LPs for the set cover problem.

P : D :
min

∑
s∈S c(s) · xs max

∑
u∈U yu

s.t.
∑

s∋u xs ≥ 1 ∀u ∈ U s.t.
∑

u∈s yu ≤ c(s) ∀s ∈ S
xs ≥ 0 yu ≥ 0

We give a primal-dual algorithm that achieves f -approximation, where f is the highest frequency of an
element u, i.e. the maximum number of occurrences of an element in the collection S.

We start with infeasible primal solution x = 0 and feasible dual solution y = 0. In every step, we take an
uncovered element u, and increase yu until some constraint becomes tight, say the constraint corresponding
to s. Then, we add s to our solution, i.e. we let xs = 1. The algorithm stops when every element is covered.
We claim the x and y satisfy (1, f)-complementary slackness.
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The first condition is trivial, since we let xs = 1 only when the corresponding constraint is tight, and the
constraint remains tight throughout the algorithm. The second condition holds, because each xs is at most
1. Hence, for any element u the sum

∑
s∋u xs is at most equal to the number of occurrences of u in the

collection, which is at most f . Therefore, x and y satisfy (1, f)-complementary slackness and the algorithm
outputs an f -approximation.

4 A Brief Overview of the Ellipsoid Method

Many naturally occurring linear programs, such as the shortest path LP in the previous section, have a
super-polynomial number of constraints. One may wonder if there is an efficient way to solve such linear
programs. In 1979, Khachyian showed how the ellipsoid method can be used to solve linear programs.

Note that any optimization can be reduced to a search problem, i.e. to find a point x in the polytope P that
maximizes cTx, one can binary-search on z∗, and look for a point in P ∩ {x | cTx ≥ z∗} if possible. If
the constraints of the polytope satisfy certain reasonable conditions, then the approximate solution of the
binary search can be rounded to an exact solution. A separation oracle is defined as follows. Given a point
x and a polytope P , the oracle must decide if x ∈ P , and if it is not, the oracle must output a hyperplane
that separates x from P .

Provided with a separation oracle, one can use the ellipsoid method to solve the search problem. Starting
with a large ellipsoid E0, centered at s0, that contains the polytope, in every step the algorithm checks
whether si ∈ P . If so, we are done and si is returned. Otherwise, there is a hyperplane aTx ≤ b that
separates si from P . This hyperplane can be shifted to include si, cutting the ellipsoid in half, with the
polytope lying in one half. Ei+1 is taken as the smallest ellipsoid that contains that half-ellipsoid. The
algorithm will stop at some point since the volume of the ellipsoid decreases exponentially.
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