Khoury College of Computer Sciences Fall 2023
Northeastern University 19 September 2023
CS 7870: Seminar in Theoretical Computer Science Scribe: Rajmohan Rajaraman

Lecture 4 Outline:

* Perturbation-stability
* Single-link clustering

* A refinement of single-link clustering is optimal for certain perturbation-stable instances

1 Introduction

In the previous lecture, we considered a local search algorithm for k-median and showed that it can be used
to obtain a (5 + £)-approximate algorithm in polynomial time, for any constant € > 0. An exercise in
PS1 asks you to prove, via an example, that this is essentially tight, so a better than 5-approximation is not
achievable using the particular local search approach.

The k-median problem for metric spaces is not only NP-hard, but is also APX-hard, meaning that there is
an absolute constant ¢ > 1 such that there is no polynomial time c-approximation for the problem, unless P
= NP. The best hardness of approximation that is currently known is a factor of 1 + 2/e [GK99|]. While this
provides some comfort for using the local search algorithm, there is still a gap in our understanding. Several
questions come to mind.

* Are there variants of local search that do better than 5-approximate?

— Yes! In fact, a natural variant where instead of swapping a pair of medians, we consider p
swaps, for an integer constant p > 1, is (3 4+ 2/p + ¢)-approximate for any ¢ > 0. And this
bound is tight. Note that by choosing p to be a sufficiently large constant, we can achieve a
(3 + e)-approximation for any £ > 0.

* What is the best approximation algorithm achievable in polynomial time by any algorithm?

— As one can imagine, this is an active area of research. The current best approximation ratio
for metric k-median is 2.675 + ¢, for arbitrary £ > 0 [BPR™17]. The algorithm is based on a
careful rounding of a linear programming relaxation, using an approach referred to as dependent
rounding.

* The approximation algorithms that have best-known approximation ratios tend to be sophisticated and
are often not implemented in practice. On the other hand, local search and other simple approaches
are often used, and appear to work well. Are there special kinds of metric spaces for which local
search or other simple clustering approaches can be shown have much better approximation ratios
than can be shown in the worst-case?

— Recent results have shown that local search yields a (1 4 ¢)-approximation for metric k-median
weighted planar graphs and for k-means in metrics of bounded doubling dimension (thus, in-
cluding Euclidean metrics of bounded dimension).

— An alternative approach to considering special cases has been that of defining notions of stability.
We will consider one such notion—perturbation-stability—in today’s lecture.

2 Perturbation-stability

In a bid to derive more informative analyses of algorithms, beyond the worst-case, several notions of stability
and perturbation have been introduced. We will study a natural and general model, called smoothed analysis,
later in the course. Here, we consider a model specific to metric spaces. Informally, a perturbation-stable
instance is one where an optimal solution remains optimal even if the instance is perturbed a bit.

Definition 1. For any parameter v > 1, a y-perturbation of a metric space (V, d) is a metric space (V, d’)
such that for all (u,v), we have
d(u,v) /vy < d'(u,v) < d(u,v).

Definition 2. For a parameter v > 1, a clustering instance (V, d) is y-perturbation stable if there is a set C*
of clusters such that C* is the unique optimal clustering solution for every ~-perturbation (V, d’) of (V, d).

A few remarks are in order. First, note that the y-perturbation stable condition requires that the optimal
clustering solution for the given k-median instance is unique. And the same solution continues to be optimal
even for y-perturbations of the underlying metric. It does not require that the centers associated with all the
clusters also stay the same; the centers and the associated costs may change with perturbations, the latter
especially since the metric is being perturbed.

One way to think about y-perturbation stable instances is the following: we are given a metric space for
which there is a single unique clustering that remains uniquely optimal even when we perturb distances up
to v factors; can we find such a clustering efficiently?

Before proceeding with this question, it is natural to ask whether y-perturbation stable instances even exist!
With some exploration, you will find that situations where the “right” clustering seems clear (points within a
cluster are close to one another while points in different clusters are not that close) are indeed y-perturbation
stable. It is, however, not easy to tell whether an instance is y-perturbation stable (for one, the definition
concerns optimal k-median solutions, which are hard to find in the first place). Nevertheless, such a notion of
perturbation stability has proved useful for various combinatorial optimization problems and has been used
to understand and evaluate practical algorithms. An interesting exercise would be to study the perturbation
stability of real-world instances, experimentally or analytically.

3 Single-link clustering

A popular algorithm for clustering is hierarchical in nature. For a given set of n points, we start with
n clusters, one for each point. We then identify two clusters that may be closer to one another (via the
presence of a single suitable link between them) than with others, and merge them into one cluster and
repeat this until we achieve a desired objective. An astute student of algorithms may recognize that this
appears very similar to the well-known Kruskal’s algorithm for minimum spanning trees. And indeed it is.

The simplest variety of single-link clustering is the following. For the given metric space (V, d), construct
a complete graph G in which the weight of edge (u,v) is d(u,v). Run Kruskal’s algorithm until we have
exactly k connected components (i.e., we have added n — k edges to the MST). Return the % clusters.

How well does single-link clustering do with respect to the k-median objective? Not surprisingly, not well
in the worst case, since the algorithm is not even bothering with the actual objective.

Consider a set of k£ + 1 regions in a metric space, spread over a line, with a distance of 1 units between
consecutive regions, except that regions k£ and k + 1 are separated by a distance of 2 units. Suppose each
of the regions 1 through & has a large number, say L > 1, of points within it very close to one another (at
distance 0, for simplicity), while region k£ + 1 has one point. The optimal clustering for this instance is for
the clusters to be regions 1 through k£ — 1 and one cluster merging the regions k£ and k£ + 1, with a total cost
of 1. The above clustering approach will create k clusters, one combining say regions 1 and 2 and then one
for each of regions 3 through £ + 1, with a total cost of L. Since L can be arbitrarily large, the MST based
algorithm will have an arbitrarily large approximation ratio. This holds despite the fact the instance is highly
stable to perturbations.

We consider the following refined single-link clustering algorithm, due to Angelidakis, Makarychev, and
Makarychev [AMM17]], which we call Kruskal+DP.

1. Run Kruskal’s algorithm to calculate a minimum spanning tree 7.

2. Determine the set of k£ — 1 edges to remove from 7" so that the resulting set of k£ clusters has minimum
k-median cost in the metric (V, d). This step can be accomplished in polynomial time using a suitable
dynamic program.

4 Analysis for perturbation stable instances

Let us begin by identifying some conditions under which the Kruskal+DP algorithm is optimal. We say that
a cluster C' is split in tree 7 if there exist two vertices v and v in C such that the unique path in 7" between
w and v passes through a vertex not in C.

Lemma 1. Kruskal+DP returns an optimal clustering if and only if there exists an optimal clustering such
that none of the optimal clusters is split in the MST.

Proof. The proof is straightforward. Since any clustering returned by Kruskal+DP is not split in the MST,
the clustering returned by the algorithm is optimal only if there exists an optimal clustering such that none
of the optimal clusters is split in the MST. For the other direction, suppose there is an optimal clustering that
is not split in the MST. Since Kruskal+DP returns a clustering that is optimal among all clusterings that are
not split in the MST, the clustering it returns has optimal cost. 0

The remainder of the proof establishes that for y-perturbation stable instances, an optimal clustering is not
split in the MST. We will establish this through a series of lemmas. First, we show that in any ~y-perturbation
stable instance, every point is much closer to the center of its cluster than to any other center. In the

remainder of this section, we use C = {C}; : 1 < i < k} to denote the unique optimal clustering for (V, d)
and let ¢; denote the center of cluster C;.

Lemma 2. If the instance is ~y-perturbation stable, then for all u, if u is in the cluster of center c¢;, then
d(u, cj) > vd(u, c;) for j # i.

Proof. The proof is by contradiction. Suppose there exists a vertex in cluster C; such that d(u,¢;) <
~vd(u, c;) for some center j # . We will argue that the instance is not ~y-perturbation stable. Let G' denote
the complete graph with egde (z,y) having weight d(x,y) for x,y € V. Let G’ denote the graph that is
identical to G except that the edge (u, ¢;) has weight d(u, ¢;). Consider the metric (V,d’), where d’ is the
shortest path distance metric in G'.

By construction, (V,d’) is a metric. We now argue that it is a ~-perturbation of (V,d). Consider any
x,y € V. If the shortest path between x and y in G’ does not use the edge (u, ¢;), then d'(z,y) = d(z, y).
Otherwise, we have

d'(z,y) = d'(z,u) +d'(u,¢;) + d'(cj, y) = d(z,u) +d'(u, ¢;) + d(cj, y)-
Since d'(u, ¢j) > d(u, ¢;)/v, we have d'(cj,y) > d(x,y)/~. Itis also easy to see that d'(x,y) < d(z,y).

We now establish that in (V,d'), the clustering C is not optimal. Clearly, u is closer to ¢; than to c¢;.
Therefore, if {c;} continue to be the centers used in an optimal clustering, v will be in a different cluster
than in C. It is possible, however, even though the centers may be different, the clusters remain the same. We
now claim that the distances within the clusters C; and C; under d’ are identical to those under d, implying
that if the clusters C; and C; are in the optimal solution, then their centers are c; and c;, respectively. But
that would lead to a contradiction since u will move to the cluster with center c;, yielding a new solution
with lesser cost than C.

Let z and y be two vertices in C;. If the shortest path between x and y under d’ does not use the edge (u, ¢;),
then this path is the same as under d, so d(x,y) = d'(z,y). Otherwise, the shortest path under d’ is one of
the following two forms:

T~ U= Cj Y T~ Cj = U~ Y.

Suppose it is of the first form (the argument for the second form is similar). Consider the path x — v —
¢; — y. We know that d(z,u) = d'(z,u) and d(u, ¢;) = d'(u, ¢;). Furthermore, d'(cj,y) = d(¢j,y) >
d(c;,y). Therefore, we have d(z,y) < d’(x,y), and indeed they are equal.

Now, consider z and y in C;. Again, if the shortest path between x and y under d’ does not use the edge
(u, ¢;), then this path is the same as under d, so d(z, y) = d'(x,y). Otherwise, the shortest path under d’ is
one of the following two forms:

T~ U= Cj Y T~ = U Y.

Suppose it is of the first form (the argument for the second form is similar). We argue that d(z,c;) <
d'(z,u) + d'(u, ¢j), which would yield d(z,y) < d'(z,y) as desired. If not, then d(z,¢;) < d(z,u) +
d(u,¢;) = d'(z,u) + d'(u, cj) < d(z,c;), contradicting the fact that z is in cluster C; in metric (V,d). O

Lemma 3. Let u be in cluster with center ¢; in the optimal clustering. For any ~y-perturbation instance with
v > 2, the distance between w and c; is strictly less than that between u and v for any v in a different cluster
than .

Proof. Let u, v, and ¢; be as given. Then, using Lemma 2] and triangle inequality, we have

d(u,v) > d(u,c;) —d(v,cj)
> 2d(u,c¢;) —d(v,cj)
> 2d(u,c;) — d(v/, Ci)2
S 3d(u, ;) d(u,v)’
- 2 2
implying that d(u,v) > d(u, ¢;). O

Lemma 4. For any ~-perturbation instance (V, d), the optimal clustering C* is not split in the MST.

Proof. The proof is by contradiction. Suppose cluster Cj is split in the MST. This means that there exists
a point « € C; such that the path from x to ¢; in the MST goes through a vertex y not in C;. Let z denote
the last vertex in the subpath from z to y that is in C;, and let w ¢ C; be the next vertex after z along this
subpath. By Lemma[3] d(z, w) > d(z,¢;); if we add the edge (z,¢;) and remove (z,w), we obtain a new
spanning tree of lesser weight, contradicting the optimality of Kruskal’s algorithm. This completes the proof
of the lemma. O

Theorem 1. Kruskal+DP is optimal for «-perturbation stable instances with v > 2.

Proof. Follows directly from Lemmas [[|and 4] O

References

[AMMI17] Haris Angelidakis, Konstantin Makarychev, and Yury Makarychev. Algorithms for stable and
perturbation-resilient problems. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, page 438-451, New York, NY, USA, 2017. Association
for Computing Machinery.

[BPR*17] Jarostaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms, 13(2), mar 2017.

[GK99] Sudipto Guha and Samir Khuller. Greedy strikes back. J. Algorithms, 31(1):228-248, apr 1999.

	Introduction
	Perturbation-stability
	Single-link clustering
	Analysis for perturbation stable instances

