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Lecture 23 Outline:

• The online primal-dual paradigm

• Ski rental

• Set cover

In this lecture, we cover two problems using the online primal-dual approach. At a high level, we first
translate our problem into a linear program. Then, at each instant, we maintain two feasible LP solutions:
one for the primal (which will be the output of the online algorithm) and one for the dual. The competitive
ratio will be the ratio between the primal cost and the dual cost. The online primal-dual paradigm has
been used for a dozens of online algorithmic problems; it has been formalized in the pioneering work
by Buchbinder and Naor [BN09]. The material in this class is largely based on the preceding research
monograph.

1 Ski rental

In a previous lecture, we presented optimal deterministic and randomized algorithms for ski rental. Here we
present the randomized algorithm using the primal-dual paradigm; recall that the algorithm achieves a better
competitive ratio of e

e−1 .

Recall the ski rental problem. A person is going skiing for an unknown number of days. Renting skis costs
1 per day and buying skis costs B. Every day, the person must decide whether to continue renting skis for
one more day or buy a pair of skis. If the person knows in advance how many days she will go skiing, she
can decide her minimum cost. If she will be skiing for more than B days it will be cheaper to buy skis but
if she will be skiing for fewer than B days it will be cheaper to rent. What should she do when she does not
know in advance how many days T she will ski?

We can define a set of variables for a linear program for how an algorithm makes the choices of buying or
renting at each day t. Let us define x to be the indicator that we have bought the ski and zt to be the indicator
that we rent on day t. Then we can form the primal-LP as follows:

min B · x+
∑

t zt
s.t. ∀t : x+ zt ≥ 1

x, zt ≥ 0
x Monotonic

The objective function sums zt over all days which is the cost of all the days we rent and B · xt which will
be B if we bought ski in the first T days. The first set of constraints is for being able to ski on the t-th day
(for all t) and monotonicity of x means that when we buy once we have the ski for the rest of the days. We



can write a dual program from this primal LP which will be the following:

max
∑

t yt
s.t.

∑
t yt ≤ B
yt ≤ 1
yt ≥ 0

The way the algorithm works is that we will maintain a solution to both the primal and the dual. The solution
to the dual is used as a lower bound on optimal answer and we output the primal solution. This way if the
solution to the primal is α · (dual solution) it will be at α · opt which is what we want. The approach is that
we use this online primal dual method to find an α competitive solution for the online fractional problem,
for a suitable α. Next, we randomly round this solution to get an online integral solution.

Now let us take a closer look at the fractional solution for this problem. In the optimal solution we have
zt = 1− x for all t; so all that an algorithm is picking is how the function x changes over time. Pictorially
we have:

In the picture above the green line is the function x which is a non-decreasing function. The shaded red
parts are zt. The cost of the algorithm for instance T would be

cost at T = B · (value of green line at T ) + the shaded red areas before T

The solution that this algorithm gives us is clearly primal feasible since we set zt = 1 − x. Showing it is
dual feasible is not trivial since we do not know if we have

∑
t yt ≤ B. For now we focus on comparing

primal cost dual cost.

When we do one iteration the change in dual cost ∆D = 1 since the only thing changing is yt = 1. The
change for the primal cost is:

∆P = zt +∆x = 1− x+ (
x

B
+

1

cB
)B = 1 +

1

c
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Algorithm 1: Online fractional ski-rental
input: online sequence of T days (unknown)

1 Set x = 0
2 for t = 1 to T do
3 if x < 1 then
4 zt = 1− x
5 x = x · (1 + 1

B ) + 1
cB

6 yt = 1

7 return B · x+
∑T

t=1 zt

Therefore by applying this in all steps, we can get

Primal cost ≤ (1 +
1

c
) Dual cost

If we prove that {yt} provides a dual feasible solution then we can prove that the primal cost is less that
(1 + 1

c ) · OPT.

Dual feasibility: To prove dual feasibility we need to bound the sum of yt by B. Every time this sum is
increasing by 1 we have x = x · (1 + 1

B ) + 1
cB and at some point x > 1 and we will not have yt = 1.

When we have
∑

t yt = 1 we have x = 1
cB . Next, when

∑
t yt = 2 we have x = 1

cB + 1
cB · (1 + 1

B ).
Generally if we have

∑
t yt = i, we have

x =
(1 + 1/B)i − 1

c

If we set c = (1+1/B)B−1, when
∑

t yt = B we will have x > 1 so we will not increase the dual solution
objective value more than B times and we get dual feasibility.

When B is large c ∼ e− 1 so our competitive ratio will be

1 + 1/c = 1 +
1

e− 1
=

e

e− 1
.

Randomized rounding: The algorithm to round the fractional solution is very elegant and simple. We
first pick τ = [0, 1] uniformly at random. The algorithm buys when x > τ happens.

We now analyze the expected cost of the randomized algorithm. Since the probability of buying skis on the
jth day is equal to xj , the expected cost of buying skis is precisely B ·

∑k
j=1 xj = Bx, which is exactly

the first term in the primal objective function. The probability of renting skis on the jth day is equal to the
probability of not buying skis on or before the jth day, which is 1−

∑j
i=1 xi. Since

zj = 1−
j−1∑
i=1

xi ≥ 1−
j∑

i=1

xi,
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we get that the probability of renting on the jth day is at most zj , corresponding to the second term in the
primal objective function. Thus, by linearity of expectation, for any number of ski days, the expected cost
of the randomized algorithm is at most the cost of the fractional solution.
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2 Online set cover

In this problem, we have a collection of sets Si, and elements arrive one by one. At each moment, we
have a collection of arrived elements, and we want to maintain a subset of S′

is such that they cover all these
elements. An online algorithm can be described by which sets are included in the answer at each moment.
We set xi to be the indicator that Si is in the collection of sets. And we want to minimize the number of sets
we are picking. We can form the following primal LP for these constraints.

min
∑

i xi
s.t. ∀j :

∑
i:j∈Si

xi ≥ 1

∀i : xi ≥ 0
≥ 0

The second constraint is imposing that for the element j we have one of the sets that contains it in the set
cover. One thing to note is that once you pick a set Si you can not delete it in the future. This means that we
have another constraint, which will be that xi’s are monotonically increasing. The dual program will be the
following:

max
∑

j yj
s.t. ∀i :

∑
j∈Si

yj ≤ 1

∀j : yj ≥ 0

We propose the following online primal-dual algorithm for set cover. The solution is clearly primal feasible

Algorithm 2: Online set cover
input: online sequence of items j = 1, ...,m

1 ∀i : Set xi = 0
2 for j = 1 to m do
3 item j arrives
4 while

∑
i:j∈Si

xi < 1 do
5 ∀i : j ∈ Si

6 xi = 2 · xi + 1
|i:j∈Si|

7 yj = yj + 1

since we increase xi’s until it satisfies the constraint in the primal program. For one iteration, the difference
in the cost of primal will be ∆P ≤ 2. This is because while we are in the while loop we have

∑
i:j∈Si

xi < 1

so the terms 2 · xi will not have a sum of greater than 1. The terms 1
|i:j∈Si| will also have a sum of at most 1

since they are all 1
k where k is the number of sets that contain element j and there is k of this sets.

The difference in the cost of the dual will be ∆D = 1 since we have yj = yj + 1 once. This will not
be a dual-feasible solution since when an item arrives several times yj > 1 which violates the constraint∑

j∈Si
yj ≤ 1. To make the solution dual feasible we use the following lemma.

Lemma 1. For a specific set Si, we have
∑

j∈Si
yj ≤ log(d) where d = maxj |{i : j ∈ Si}|.

Proof. Suppose the set Si consists of elements j1, ..., jk. When the first item j1 arrives we set xi = 1
d . When
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j2 arrives we set xi = 2 · 1
d + 1

d = 3
d . When j3 arrives we set xi = 2 · 3

d + 1
d = 7

d . This is an exponential
sequence for xi’s, so after log d steps, xi exceeds one, and the corresponding yj will never be increased.

Now, using the above lemma, we can satisfy the dual constraints with a log d factor meaning
∑

j∈Si
yj ≤

log(d). To make the solution dual feasible all we need to do is have yj = yj +
1

log d in line 7 of algorithm 2.
This will make ∆P = 2 and ∆D = 1

d so our competitive ratio will be

∆P

∆D
= O(log d)
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