
Khoury College of Computer Sciences Fall 2023
Northeastern University 1 December 2023
CS 7870: Seminar in Theoretical Computer Science Scribe: Shashank Manjunath

Lecture 22 Outline:

• Online Algorithms

• Randomized Algorithm for Ski Rental

• Lower Bound for Randomized Ski Rental

• Online Covering Problems

We continue our study of online algorithms with a randomized algorithm for ski rental, a lower bound
for randomized ski rental illustrating a general approach, and then close with introducing online covering
problems. Some of the material is drawn from notes by Viswanathan Nagarajan [Nag21].

1 Online Algorithms

We begin with an overview of frameworks for online optimization. There are two main frameworks for
online optimization: online learning and online algorithms. In online learning, we calculate Regret, which
is the optimal static cost (e.g., the cost of a solution that is fixed, such as picking a single expert) subtracted
from the online loss incurred by a given online algorithm. We typically try to analyze Regret as a function
of T , the number of rounds we run our algorithm for, and the goal is to achieve regret sublinear in T . In
online algorithms, we analyze the competitive ratio, given as follows:

Competitive Ratio = max
σ

Alg(σ)
OPT(σ)

Note that in the regret framework, the ”optimal” being compared with is a static solution which is a fixed
policy for the whole sequence, while in the competitive analysis framework, the optimal offline solution is
the best possible for the given sequence of inputs. On the other hand, regret is an additive guarantee (we
are taking the difference between the online algorithm and the static optimal), while competitive ratio is a
multiplicative guarantee.

1.1 Randomized Algorithms for Ski Rental

Consider the ski rental problem. Consider rounds t = 1, · · · , T . At each step t, we are asked to decide
whether to rent skis or buy skis. Renting skis incurs cost 1, and buying skis incurs cost B. In the previous
lecture, we showed that the best deterministic competitive ratio achievable for ski rental is 2 − 1/B. In
particular, we considered the following simple deterministic algorithm: for any length sequence to rent for
B − 1 steps, then buy on the Bth step. This yields a competitive ratio of 2− 1/B. Indeed, no deterministic
algorithm can attain a competitive ratio of less than 2− 1/B.

I1 I2 I3 I4 I5 · · · IB−1 IB I∞
Alg0 B/1 B/2 B/3 B/4 B/5 · · · B/(B − 1) B/B B/B

Alg1 1/1 (B + 1)/2 (B + 1)/3 (B + 1)/4 (B + 1)/5 · · · (B + 1)/(B − 1) (B + 1)/B (B + 1)/B

Alg2 1/1 2/2 (B + 2)/3 (B + 2)/4 (B + 2)/5 · · · (B + 2)/(B − 1) (B + 2)/B (B + 2)/B

Alg3 1/1 2/2 3/3 (B + 3)/4 (B + 3)/5 · · · (B + 3)/(B − 1) (B + 3)/B (B + 3)/B
...

...
...

...
...

... . . .
...

...
...

AlgB−1 1/1 2/2 3/3 4/4 5/5 · · · (B − 1)/(B − 1) (2B − 1)/B (2B − 1)/B

Table 1: Comparison of determinisitic algorithms and sequence lengths

We now present a randomized algorithm for ski rentals. The competitive ratio analyzes the price of uncer-
tainty. In a randomized algorithm, we provide a probability distribution over deterministic algorithms, i.e.
with probability ρi we pick Algi. Since we must have a probability distribution, we require that

∑
i ρi = 1.

This provides a competitive ratio as follows:

Competitive Ratio = max
σ

E
[

Alg(σ)
Opt(σ)

]
For analyzing randomized algorithms, it is common to assume an oblivious adversary, or an adversary that
does not know the random choices of algorithm. Consider the number of possible instances, and denote by
Ij all sequences of length j. We present potential competitive ratios associated with instance lengths and
algorithms in Table 1. We can analyze the expected cost of each instance as follows.

E[I1] = ρ0B + ρ1 + ρ2 + · · · (1)

E[I2] = ρ0
B

2
+ ρ1

(
B + 1

2

)
+ ρ2 + · · · (2)

E[I3] = ρ0
B

3
+ ρ1

(
B + 1

3

)
+ ρ2

(
B + 2

3

)
+ ρ3 + · · · (3)

...

E[IB] = ρ0 + ρ1

(
B + 1

B

)
+ · · ·+ ρB−1

(
2B − 1

B

)
(4)

We can now express the selection of the best randomized algorithm as one obtained by the solution to the
following linear program.

min c such that:

(1) ≤ c

(2) ≤ c

(3) ≤ c

...

(4) ≤ c∑
i

ρi = 1

2

Here, c refers to the competitive ratio, which we want to minimize, and each of the constraints indicates
that the expected cost of the algorithm on a given instance Ij is at most c times the optimum cost for that
instance (as required). One potential solution to this linear program is to set all equations equal to c.

ρ0B + ρ1 + ρ2 + · · · ρB−1 = c

ρ0
B

2
+ ρ1

(
B + 1

2

)
+ ρ2 + · · · = c

ρ0
B

3
+ ρ1

(
B + 1

3

)
+ ρ2

(
B + 2

3

)
+ ρ3 + · · · = c

...

ρ0 + ρ1

(
B + 1

B

)
+ · · ·+ ρB−1

(
2B − 1

B

)
= c

Solving this system of equations, we obtain ρi = ρ0

(
B

B−1

)i
. Furthermore, since the ρi form a probability

distribution, we know that: ∑
i

ρi = 1

Therefore,

B−1∑
i=1

ρ0

(
B

B − 1

)i

= 1

ρ0

(

B
B−1

)B
− 1

B
B−1 − 1

 = 1

=⇒ ρ0 =
1

B − 1
· 1(

B
B−1

)B
− 1

Recall that we set the inequality constraints to be equalities. Therefore,

c = ρ0(B − 1) + ρ0 + ρ1 + · · ·+ ρB−1 = ρ0(B − 1) + 1

c = 1 +
1(

B
B−1

)B
− 1

c ≈ 1 +
1

e− 1
for sufficiently large B

Therefore, c = e
e−1 is the competitive ratio.

3

1.2 Lower Bound for Online Randomized Algorithm

Recall the linear program developed in Section 1.1. The randomized algorithm has ρi assigned to Algi. We
rewrite this linear program as follows:

∀j : min c such that −
∑
i

ρi
Algi(Ij)
Opt(Ij)

+ c ≥ 0∑
i

ρi = 1

Let µj denote each constraint, and r denote that
∑

i ρi = 1. We can write the dual problem as follows:

max
r

such that ∀i : −
∑
j

µj
Alg(Ij)
Opt(Ij)

+ r ≤ 0

∑
j

µj ≤ 1

Note that µj is a distribution over instances, and we calculate the expected performance of Algi over all
instances according to this distribution.

Lemma 1 (Yao’s Lemma). Consider an online problem Π. Suppose there is a distribution µ over instances
such that every deterministic algorithm Alg has expected competitive ratio ≥ r. Then there exists no ran-
domized algorithm with competitive ratio less than r.

Proof. By linear program duality.

Yao’s lemma allows us to develop a lower bound for randomized algorithms by analyzing the expected
performance of deterministic algorithms. The task for us is to select a suitable distribution over instances. It
turns out that if we choose instance Ij with probability 1

B

(
1− 1

B

)j , then every deterministic algorithm has
expected competitive ratio at least e/(e− 1).

2 Online Covering Problems

For this problem, at the start, we have sets S1, · · · , Si, · · · , Sn ⊆ U . We additionally have a cost ci associ-
ated with each Si. We assume that ci = 1. In this problem, at each online step, an element of i ∈ U arrives.
Our required action is to select a set Si that covers the element i. All elements that have already arrived
must be covered. A set that has been picked cannot be removed. The overall goal is to minimize the cost of
the sets.

4

We present a potential algorithm using linear programming as follows:

min
∑
i

cixi such that∑
i:j∈Si

xi ≥ 1∀j arrived

xi ≥ 0

xi ∈ 0, 1

Our approach for covering is to solve the linear relaxation of this linear program in an online manner, thus
developing a competitive online algorithm for the fractional problems, then apply randomized rounding to
get a randomized online algorithm for the (integral) covering problem.

References

[Nag21] Viswanath Nagarajan. Introduction to online optimization. Lecture notes, available from
https://viswa.engin.umich.edu/wp-content/uploads/sites/169/2021/
02/online-basics.pdf, 2021.

5

https://viswa.engin.umich.edu/wp-content/uploads/sites/169/2021/02/online-basics.pdf
https://viswa.engin.umich.edu/wp-content/uploads/sites/169/2021/02/online-basics.pdf

	Online Algorithms
	Randomized Algorithms for Ski Rental
	Lower Bound for Online Randomized Algorithm

	Online Covering Problems

