
Khoury College of Computer Sciences Fall 2023
Northeastern University 28 November 2023
CS 7870: Seminar in Theoretical Computer Science Scribe: Mohammad Saneian

Lecture 20 Outline:

• Online Gradient Descent

• Stochastic Gradient Descent

• Online Algorithms and Competitive Analysis

These scribe notes cover the topics of online gradient descent and the ski rental problem. The material is
partly based on [BN+09] and Nagarajan lecture notes for online optimization [Nag21].

1 Online gradient descent

In the online gradient descent problem, we have a convex body K and a sequence of convex functions ft
which is unknown to us. Our goal is to play xt ∈ K such that we minimize

∑
ft(xt). We define D to be

the diameter of the convex body K. A possible algorithm for online gradient descent is as follows:

Algorithm 1: Online Gradient Descent
input: f , K, and set of step sizes {ηt}

1 Set x1 ∈ K
2 for t = 1 to T do
3 Play xt and get loss lt = ft(xt)
4 yt+1 = xt −∇ft(xt)ηt
5 xt+1 =

∏
K yt+1

6 return
∑T

t=1 lt

Here
∏

K means the point that is the projection of yt in K in case that yt lies outside K. The main difference
with gradient descent is the step sizes ηt and how you calculate the gradients. We define G to be the upper
bound for the gradients. In the previous lecture, we proved the following theorem.

Theorem 1. If we run Algorithm 1 for online gradient descent with ηt =
D

G
√
T

, it attains the regret:

regret =
∑
t

ft(xt)−min
x∗

∑
t

ft(x
∗) ≤ 3GD

√
T

2

Note that proving a bound of O(GDT) on the regret is easy since the functions ft are convex and the
diameter of K is D and the gradient is upper bounded by G we have

ft(xt)− ft(x
∗) ≤ GD.

Summing over all t for ft we get that regret ≤ GDT . Now we prove that Ω(GD
√
T) regret is unavoidable

for this problem, establishing that in the worst-case, online gradient descent has asymptotically optimal
regret in terms of the parameters G, D, and T .

Theorem 2. For online Gradient Descent Ω(GD
√
T) loss is unavoidable.

Proof. To prove this, we give an example of a convex body and convex functions such that this loss is
unavoidable. Let K = [−1, 1]n that is the set of points inside a hypercube i.e.

K = {(x1, x2, ..., xn)} : −1 ≤ xi ≤ 1, ∀i

And also let f be the set of functions on vertices of K such that:

fv = vT · x, v ∈ {−1, 1}n

Let us first calculate D and G. We can see that D =
√
4 + 4 + ...+ 4 = 2

√
n which is the distance between

the point (1, 1, . . . , 1) and the point (−1,−1, . . . ,−1). We know that ∇fv(x) = v so ||∇fv(x)|| =
√
n so

G =
√
n.

Let the sequence of ft be the sequence where each time we pick one vertex vt from the vertices of K
uniformly at random and we set ft = fvt . For a fixed t we have

Evt [v
T
t · xt] = E

[∑
i

vt,i · xt,i

]
= 0

This is because in each term vt,i is uniformly chosen from −1 and 1. Now lets look at x∗ which minimizes
the regret.

Ev1,v2,...,vT [min
x∗

∑
t

ft(x
∗)] = E

[
min
x∗

T∑
t=1

n∑
i=1

vt,ix
∗
i

]

= E

[
min
x∗

T∑
t=1

x∗i

n∑
i=1

vt,i

]

= E

[
min
x∗

T∑
t=1

x∗i

n∑
i=1

vt,i

]

= E

[
T∑
t=1

−|
n∑

i=1

vt,i|

]

= −nE

[
|

T∑
t=1

vt,i|

]

In claim 1 below, we show that E
[
|
∑T

t=1 vt,i|
]
= Ω(

√
T); so, our regret will be

E[regret] =
∑
t

ft(xt)−min
x∗

∑
t

ft(x
∗) ≤ 0− (−n

√
T) = n

√
T = Ω(GD

√
T).

The last step is due to G = D = Θ(
√
n).

2

Claim 1. If we have T random variables v1, ..., vT each uniformly chosen between −1 and 1 we have:

E[|
T∑
t=1

vt|] = Ω(
√
T)

Proof. We can see this problem as a random walk problem. Let us have a point starting at 0 and each time
it goes from x to x− 1 with probability 1

2 and goes to x+ 1 with probability 1
2 . Now we want to prove that

E[position after T rounds] = Ω(
√
T).

For the walk to end up at position r, we should choose T
2 − r

2 left moves and T
2 + r

2 right moves. So we have

Pr[walk ends at r] =
1

2T
·
(

T
T
2 + r

2

)
≤ 1

2T
·
(

T

T/2

)
≤ c√

T
(1)

where the last step is due to Stirling’s approximation, which yields
(

T
T/2

)
= Θ

(
2T√
T

)
. Let us set R =

√
T

10c .
The probability that the walk ends up at radius at most R from 0 due to (1) is:

Pr[walk ends at radius at most R] ≤ 2R · c√
T

=
1

5
.

Hence with probability 4
5 distance of the ending point of random walk is at least R = Ω(

√
T) from 0; this

implies that the expected value of the ending point is Ω(
√
T).

2 Stochastic Gradient Descent

For the stochastic gradient descent problem, we have a convex body K and we want to find the point
x such that it minimizes the value of function f , i.e. minx∈K f(x). In the pseudocode above we have,

Algorithm 2: Stochastic Gradient Descent
input: f , K, and set of step sizes {ηt}

1 Set x1 ∈ K
2 for t = 1 to T do
3 yt+1 = xt − ∇̃tηt
4 xt+1 =

∏
K yt+1

5 return x̄ = 1
T

∑T
t=1 xt

E[∇̃t] = ∇(f(xt)). For example, if we have a classifier for a set of points, what gradient descent does it that
calculates loss on all of the points to calculate the gradient. However, stochastic gradient descent computes
the loss on a random point and the expected gradient is the same as what we have in gradient descent.

Theorem 3. Stochastic gradient descent has the following convergence property

E[f(x̄)]− f(x∗) ≤ 3GD

2
√
T

for the same values of ηt as in Theorem 1.

3

Proof.

E[f(x̄)]− f(x∗) = E[f(
1

T

T∑
t=1

xt)− f(x∗)]

≤ E[
1

T

T∑
t=1

(f(xt)− f(x∗))] due to convexity

≤ E[
1

T

T∑
t=1

∇T
t (xt − x∗)]

≤ 1

T
E[Regret] due to online gradient descent by setting ft = ∇T

t (xt − x∗)

≤ 3GD

2
√
T

3 Online Algorithms and Competitive Analysis

In online algorithms, we have a sequence of inputs. At step t we can take an action we knowledge of the
input only up to the step t. Our algorithm will have a certain cost doing so. One measure is the regret that
our algorithm ALG incurs which is

regret = cost of ALG − cost of optimal static ALG

By ”static ALG”, we mean that the algorithm we are comparing with knows the full sequence but makes
a static choice for the entire sequence (e.g., a fixed expert in the online learning problem). Another useful
notion to quantify how good an online algorithm does is in terms of competitive ratio which is defined as

max
σ

=
ALG(σ)

OPT (σ)

where σ is any possible sequence of inputs.

3.1 Ski rental

A person is going skiing for an unknown number of days. Renting skis costs 1 per day and buying skis costs
B. Every day, the person must decide whether to continue renting skis for one more day or buy a pair of
skis. If the person knows in advance how many days she will go skiing, she can decide her minimum cost.
If she will be skiing for more than B days it will be cheaper to buy skis but if she will be skiing for fewer
than B days it will be cheaper to rent. What should she do when she does not know in advance how many
days T she will ski?

In each step, the algorithm will decide whether to rent or buy skis. And an algorithm is essentially deciding
when to buy because once we buy the ski, we do not need to rent implying that the cost incurred in any step

4

after the buying of the ski is zero. So let us define ALGi to be the algorithm that rents for the first i steps
and buys on step i+ 1. Also let us classify the inputs and call Ij to be the input where the sequence ends at
the j-th day. The optimal cost for Ij would be j if we have j < B and it is B if we have j ≥ B.

A natural algorithm is to balance the renting and buying; that is, buy when the amount that you have paid
for renting is equal to buying once. Formally we prove the following theorem.

Theorem 4. The competitive ratio of algorithm ALGB−1 is 2− 1
B and this is the best possible ratio for any

deterministic algorithm.

Proof. There are two cases to consider. In the first case, where j < B+1, the competitive ratio of ALGB−1

is 1. In the second case where we have j ≥ B + 1, ALGB−1(Ij) = 2B − 1 and OPT(IJ) = B so
the competitive ratio is 2 − 1

B . Since the competitive ratio is the maximum over all inputs Ij the overall
competitive ratio will be 2− 1

B .

Now, to show that this is the best possible competitive ratio for any deterministic algorithm. Consider any
algorithm ALGi. The worst instance for this algorithm is Ij with j = i+1. Note that ALGi(Ij) = (i+B).
Consider the following two cases.

• if i ≥ B − 1, then OPT(Ij) = B. Therefore,

ALG(Ij)

OPT(Ij)
=

i+B

B
=

i+ 1

B
+ 1− 1

B
≥ 2− 1

B

• if 0 ≥ i ≥ B − 2 then OPT(Ij) = i+ 1, and

ALG(Ij)

OPT(Ij)
=

i+B

i+ 1
= 1 +

B − 1

i+ 1
≥ 2

We will see in the next lecture that we can get a better competitive ratio using randomization.

References

[BN+09] Niv Buchbinder, Joseph Seffi Naor, et al. The design of competitive online algorithms via a
primal–dual approach. Foundations and Trends® in Theoretical Computer Science, 3(2–3):93–
263, 2009.

[Nag21] Viswanath Nagarajan. Introduction to online optimization. Lecture notes, available from
https://viswa.engin.umich.edu/wp-content/uploads/sites/169/2021/
02/online-basics.pdf, 2021.

5

https://viswa.engin.umich.edu/wp-content/uploads/sites/169/2021/02/online-basics.pdf
https://viswa.engin.umich.edu/wp-content/uploads/sites/169/2021/02/online-basics.pdf

	Online gradient descent
	Stochastic Gradient Descent
	Online Algorithms and Competitive Analysis
	Ski rental

