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Lecture 19 Outline:

• Gradient Descent

• Online convex optimization

• Online Gradient Descent

This lecture introduces the offline unconstrained and constrained gradient descent problems as well as the
online gradient descent problem. We begin by presenting an algorithm for unconstrained gradient descent
and proving that it converges to the correct answer with a rate O( 1√

T
). We then show how this algorithm

can be extended to the constrained version of the problem. Finally, we introduce the online gradient descent
problem and prove that a very similar algorithm achieves a regret ≤ 3

2GD
√
T . In a future lecture we will

show this is optimal up to constants. The lecture is partially based on [Haz16, Chapters 2,3].

1 Gradient Descent

As a preliminary we give the definition of a convex function and a convex body.

Definition 1. A function f : Rn → R is convex if ∀x, y ∈ Rn, f(y)− f(x) ≥ (∇f(x))⊤(y − x)

Definition 2. A set K is convex if ∀α ∈ [0, 1], ∀x, y ∈ K, αx+ (1− α)y ∈ K

The objective of gradient descent is to find the minimum value and the minimizer of a convex function,
so find minx f(x) and argminxf(x). We can do this with or without constraints; in the constrained case,
we restrict our search space to points in some convex set. The algorithms for each are similar, and give us
similar guarantees. In this lecture we will mainly focus on the unconstrained setting.

1.1 Unconstrained convex optimization

Algorithm 1: Unconstrained Gradient Descent
input: f , initial point x1, T , and set of step sizes {ηt}

1 for t = 1 to T do
2 xt+1 = xt − ηt∇t where ∇t = ∇f(xt)

3 return x̄ = argmin
xt

f(xt)

We will specify what the {ηt} should be when we do the analysis. T is some parameter that we input that
specifies how many iterations of gradient descent we will do. The interesting question to ask is: how close



is x̄ to x∗, where x∗ = argmin
x

f(x)? Ideally, we would like to figure out how this difference varies with T ,

as this will tell us how fast our method converges to the optimal.

We need some preliminaries before the analysis. In order to establish the convergence of gradient descent,
it helps to assume that the gradient of any point is bounded by some value G, ∀x, ||∇f(x)|| ≤ G. Now we
define the following terms, and set ηt to what is referred to as the Polyak step-size.

dt = ||xt − x∗||
ht = f(xt)− f(x∗)

ηt =
ht

||∇t||2

(1)

So we see that in order to run the algorithm we need to have a good idea of what f(x∗), although crucially
this does not require us to know what x∗ is.

Theorem 1. If we run Algorithm 1 and get result x̄ then

f(x̄)− f(x∗) ≤ Gd1√
T

Proof.

f(x̄) ≤ 1

T

T∑
t=1

f(xt)

=⇒ f(x̄)− f(x∗) ≤ 1

T

T∑
t=1

(f(xt)− f(x∗))

=⇒ f(x̄)− f(x∗) ≤ 1

T

T∑
t=1

ht

Next by using the Cauchy-Shwarz inequality ⟨u, v⟩2 ≤ ⟨u, u⟩ · ⟨v, v⟩ on the two vectors u = (1, ...1) and
v = (h1, ..., hT ) we see that

(

T∑
t=1

ht)
2 ≤ T

T∑
t=1

h2t

Combining with the first part we get

f(x̄)− f(x∗) ≤ 1√
T

√√√√ T∑
t=1

h2t (2)
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Next we derive another useful inequality

d2t+1 − d2t = ||xt+1 − x∗||2 − ||xt − x∗||2

= ||xt − x∗ − ηt∇t||2 − ||xt − x∗||2

= ||xt − x∗||2 + ||ηt∇t||2 − 2(xt − x∗)⊤ηt∇t − ||xt − x∗||2

≤ ||ηt∇t||2 − 2ηt(f(xt)− f(x∗)) by the definition of convex function

=
h2t

||∇t||2
− 2

h2t
||∇t||2

=
−h2t
||∇t||2

Thus we conclude that
h2t

||∇t||2
≤ d2t − d2t+1 (3)

Combining with equation (2) we get

f(x̄)− f(x∗) ≤ 1√
T

√√√√ T∑
t=1

||∇t||2(d2t − d2t+1)

≤ G√
T

√
d21

=
Gd1√
T

Now we state some further results without proof. For strongly convex functions the convergence rate is
O( 1

T ), for β-smooth functions the converge rate is also O( 1
T ), and finally for well-conditioned functions the

convergence rate is e−Ω(T ).

1.2 Constrained convex optimization

For the constrained version of the problem, we seek to find argmin
x∈K

f(x) for some convex set K and convex

function f . We will have to introduce a function Πk(x) which returns the projection of x onto K.

Algorithm 2: Constrained Gradient Descent
input: f , initial point x1, T , and set of step sizes {ηt}

1 for t = 1 to T do
2 yt+1 = xt − ηt∇t where ∇t = ∇f(xt)
3 xt+1 = ΠK(yt+1)

4 return x̄ = argmin
xt

f(xt)
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This algorithm gives us the same convergence bound as did the unconstrained algorithm, but we leave this
without proof. Intuitively this works because for any other point z ∈ K, ||yt − z|| ≥ ||xt − z||, so we are
still moving towards x∗.

2 Online Gradient Descent

The online gradient descent problem is as follows. At each time step t, there exists a convex function ft
that is not known by the algorithm. The algorithm has to produce some xt ∈ K, and then is made aware of
ft. Its loss at each time step is ft(xt), and the overall performance of the algorithm is

∑
t ft(xt). We then

calculate the regret of the function as
∑

t ft(xt)−
∑

t ft(x
∗) where x∗ = argmin

x∈K

∑
t ft(x).

Algorithm 3: Online Gradient Descent
input: A convex set K, a set of step sizes {ηt}

1 x1 = arbitrary x ∈ K
2 for t = 1 to T do
3 Play xt for ft
4 yt+1 = xt − ηt∇t where ∇t = ∇ft(xt)
5 xt+1 = ΠK(yt+1)

Similarly to in the offline setting we assume the gradients are bounded, ||∇t|| ≤ G. We will set the value of
ηt in the analysis. Finally we let D be the diameter of K.

Theorem 2. The regret of algorithm 3 is at most 3
2GD

√
T when ηt =

1√
t
.

Proof.
Regret =

∑
t

(ft(xt)− ft(x
∗)) (4)

ft(xt)− ft(x
∗) ≤ ∇⊤

t (xt − x∗) by the definition of convex function (5)

||xt+1 − x∗||2 = ||ΠK(yt+1)− x∗||2

≤ ||yt+1 − x∗||2 by Pythagorean theorem

= ||xt − x∗ − ηt∇t||2

= ||xt − x∗||2 + η2t ||∇t||2 − 2ηt∇⊤
t (xt − x∗),

which then gives us that

∇⊤
t (xt − x∗) ≤ 1

2ηt
(d2t − d2t+1 + η2t ||∇t||2) (6)
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Putting together equations (4), (5), and (6) we get that

Regret ≤
∑
t

(
1

2ηt
(d2t − d2t+1 + η2t ||∇t||2))

=
1

2

∑
t

1

ηt
(d2t − d2t+1) +

1

2

∑
t

ηt||∇t||2

≤ 1

2

∑
t

d2t

(
1

ηt
− 1

ηt−1

)
+

G2

2

∑
t

ηt

≤ D2

2

∑
t

(
1

ηt
− 1

ηt−1

)
+

G2

2

∑
t

ηt

≤ D2

2ηT
+

G2

2

∑
t

ηt

Now we try to set these two quantities equal to each other as a proxy for minimizing their sum. Essentially
we want to set ηt such that

∑
t ηt ≈

1
ηT

. We can approximate this using an integral.∫ T

1
ηtdt =

1

ηT

=⇒ ηT =
−1

η2T
· dηT
dT

by taking the derivative

=⇒ dT ≈ −dηT
η3T

=⇒ ηT ≈ Θ(
1√
T
) by integrating

Alternatively, we can also show

∑
t

1√
t
≤ 1 +

∫ T

0

1√
t
dt = 1 + 2

√
T .

So we conclude that we should set ηt = D
G
√
t

and subequently derive

Regret ≤ D2

2ηT
+

G2

2

∑
t

ηt =
GD

√
T

2
+

2GD
√
T

2
=

3

2
GD

√
T .
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