
Khoury College of Computer Sciences Fall 2023
Northeastern University 10 November 2023
CS 7870: Seminar in Theoretical Computer Science Scribe: Shashank Manjunath

Lecture 18 Outline:

• Hedge Algorithm

• Convex Optimization

• Gradient Descent

In this lecture, we continue our study of online learning and online convex optimization. We build on
the learning with expert advice problem studied in the previous lecture and present the Hedge algorithm for
general loss values. We then introduce some definitions and preliminaries for convex optimization, including
the gradient descent algorithm. The lecture is largely based on [Haz16, Chapter 2].

1 The Hedge Algorithm

We consider the following framework for online learning. We have N experts and express the loss function
at time t with ℓt, where ℓt(i) indicates the loss of expert i at time t. For this lecture, we assume that
ℓt(i) ∈ [0, 1]. (This generalizes the {0, 1} case studied last class; more general loss values can also be
handled.) At each time step, we incur the loss of one selected expert, and measure our performance in the
form of regret:

Regret(T) = max
i

{
T∑
t=1

ℓt(At)−
T∑
t=1

ℓt(i)

}
This can alternatively be formulated as:

Regret(T) =
T∑
t=1

ℓt(At)−min
i

{
T∑
t=1

ℓt(i)

}

We wish to study how Regret varies as a function of t under various algorithms. A trivial upper bound
for Regret is T since the loss at each step is bounded by 1. At a minimum, a low-regret algorithm should
achieve o(T). The Hedge algorithm achieves an O(

√
T logN) bound on Regret. The general idea of

the Hedge algorithm is to implement a weighted majority of experts. In the following, we use exp(x) to
represent ex.

Note the weight update:

wt+1(i) = wt(i) exp(−εℓt(i)) (1)

Additionally, note the following useful inequalities:

Algorithm 1: Hedge Algorithm
Data: Fix ε. Set w(i) = 1∀i

1 for t = 1, · · · , T do
2 Select expert it = i with probability xt(i) =

wt(i)∑
j wt(j)

3 Incur loss of ℓt(it)
4 Update weights: wt+1(i) = wt(i) exp(−εℓt(i))

5 Return weights wT

exp(−x) ≥ 1− x (2)

exp(−x) ≤ 1− x+
x2

2
(3)

We now proceed with the analysis of the regret of the Hedge algorithm.

Theorem 1. The Regret of the Hedge algorithm is bounded as follows:

Regret(T) ≤ ln(N)

ε
+

ε

2

T∑
t=1

x⊤t ℓ
2
t (4)

Proof. Define ϕt =
∑

iwt(i). Note that ϕ1 =
∑

i 1 = N . Furthermore, by definition, we have

wt(i) = xt(i)
∑
i

wt(i) = xt(i)ϕt.

Thus,

ϕt+1 = ϕt

(∑
i

xt(i) exp(−εℓt(0))

)

ϕt+1 ≤ ϕt

(∑
i

xt(i)

(
1− εℓt(i) +

ε2ℓt(i)
2

2

))

by the expansion of exp(−εℓt(i)) using Equation (3).

ϕt+1 ≤ ϕt

(∑
i

xt(i)− ε
∑
i

xt(i)ℓt(i) +
ε2
∑

xt(i)ℓt(i)
2

2

)

≤ ϕt

(
1− εx⊤t ℓt +

ε2

2
x⊤t ℓ

2
t

)
≤ ϕt exp

(
−εx⊤t ℓt +

ε2

2
x⊤t ℓ

2
t

)
.

2

(For the second inequality, we use
∑

i xt(i) = 1.) Therefore,

ϕT ≤ ϕ1 exp

(
−ε

T∑
t=1

x⊤t ℓt +
ε2

2

T∑
t=1

x⊤t ℓ
2
t

)

≤ N exp

(
−ε

T∑
t=1

x⊤t ℓt +
ε2

2

T∑
t=1

x⊤t ℓ
2
t

)

Fix any expert i. By definition of ϕT and wT (i), we have

ϕT ≥ exp

(
−ε

T∑
t=1

ℓt(i)

)
.

We thus obtain

−ε

T∑
t=1

ℓt(i) ≤ ln(N)− ε

T∑
t=1

x⊤t ℓt +
ε2

2

T∑
t=1

x⊤t ℓ
2
t ∴

T∑
t=1

x⊤t ℓt(i)

Rearranging, we obatin the following upper bound on the expected loss of the Hedge algorithm.

T∑
t=1

ℓt(i) +
ε

2

T∑
t=1

x⊤t ℓ
2
t +

ln(N)

ε
,

which yields the desired upper bound on the Regret of the Heade algorithm.

We want to set ε so as to minimize regret. If ℓt(i) ∈ [0, 1]∀ i, then we have:∑
t

x⊤t ℓt ≤
∑
t

ℓt(i) +
εT

2
+

ln(N)

ε

To minimize the regret, we need to set ε so as to balance the two terms εT
2 and ln(N)

ε . This is attained by
setting

ε =

√
2 ln(N)

T

We thus obtain that the Regret of the Hedge algorithm is O(
√
T ln(N).

2 Convex Optimization and Gradient Descent

In the general setting of online convex optimization, we are given a convex body K, which is bounded and
closed.

Definition 1 (Convex Body). A body K is convex if for all x, y ∈ K and α ∈ [0, 1], αx+ (1− α)y ∈ K.

We want to optimize a convex function f : Rd → R on a convex body.

3

Definition 2 (Convex Function). A function f : Rd → R is convex if for all α ∈ [0, 1] and x, y ∈ K,
f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

Consider t = 1, · · · , T : ft. We want to return the xt that minimizes
T∑
t=1

ft(xt). Online gradient descent

solves this problem. To start, we consider the standard gradient descent algorithm.

Gradient descent works by moving x in the direction opposite the derivative of f(x) for some step size
η. For a convex function this will eventually get close to the minimum. In particular, the aim of gradient
descent for unconstrained convex optimization is to find an x that minimizes f(x) where f is some convex
function.

Algorithm 2: Gradient Descent for Unconstrained Convex Optimization

1 Set x1 arbitrary
2 for t = 1, · · · , T do
3 xt+1 = xt − ηt∇tf(xt)

4 Return x = argminxt
f(xt)

For this algorithm, it is not obvious how to set ηt, and different settings of ηt have been proposed and
adopted for different optimization objectives. The convergence time also depends on the initial x1. If ηt is
set to η for all t, it takes |x1−x⋆|

η steps to reach x⋆, the minimum. We provide some definitions associated
with convexity below, which are used extensively in convex optimization studies. We will only discuss these
sparingly.

Definition 3 (Multidimensional Convexity). Given f : Rd → Rm and x, y ∈ Rd, f is convex if:

f(y)− f(x) ≥ ∇f(x)⊤(y − x)

Definition 4 (α-Strongly Convex). Given f : Rd → Rm and x, y ∈ Rd, f is α-Strongly convex if:

f(y)− f(x) ≥ ∇f(x)⊤(y − x) +
α

2
∥y − x∥2

Definition 5 (β-Smooth). Given f : Rd → Rm and x, y ∈ Rd, f is β-Smooth if it is convex and obeys:

f(y)− f(x) ≤ ∇f(x)⊤(y − x) +
β

2
∥y − x∥2

Definition 6 (Well-conditioned). A function f : Rd → Rm is well-conditioned if it is α-strongly convex
and β-smooth, with α ≤ β.

γ =
α

β

is known as the condition number.

4

References

[Haz16] Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimiza-
tion, 2(3-4):157–325, 2016.

5

	The Hedge Algorithm
	Convex Optimization and Gradient Descent

