
Khoury College of Computer Sciences Fall 2023
Northeastern University 31 October 2023
CS 7870: Seminar in Theoretical Computer Science Scribe: Omer Wasim

Outline:

• Psuedo-polynomial time and smoothed analysis

• Equivalence for binary optimization problems

1 Introduction

In the previous lecture, we introduced smoothed analysis and saw an example of its utility in establishing a
polynomial time guarantee on the expected running time of a popular local search heuristic for TSP. In this
example, we go deeper and look at a stronger connection of smoothed complexity with pseudo polynomial
time algorithms. We study smoothed analysis in the context of binary optimization and present an amazing
result that shows that whenever a smoothed polynomial time algorithm exists, we can obtain a pseudo
polynomial time algorithm and vice versa! Thus, for a wide variety of problems that can be cast as binary
optimization instances, the smoothed complexity class and pseudo polynomial time complexity classes are
equivalent. The equivalence holds more generally, i.e. beyond binary optimization. In this lecture, we focus
attention on the the equivalence for binary optimization problems. The equivalence result is due to Beier
and Vöcking [BV06], and our presentation is based on the excellent lecture notes of Roughgarden [Rou17].

2 Preliminaries

Recall that the smoothed complexity of algorithm A is defined as,

S(n) = sup
x s.t. |x|=n

Er(σ)[c(A, x+ r(σ))]

where c(A, x+ r(σ)) is the running time of algorithm of A on instance x+ r(σ) where r(σ) is the perturba-
tion to x according to some distribution. A problem is said to admit a smoothed polynomial time algorithm,
if there exists an algorithm with smoothed complexity which is polynomial in the input size (i.e. n) and
1
σ . As before, we assume that the perturbation is not spiky, and the probability density function f(x) of the
perturbation function satisfies f(x) < 1

σ .

Consider a binary optimization problem in canonical form:

max

n∑
i=1

vixi

x ∈ F where F is a feasible set

x ∈ {0, 1}n, vi ∈ Z+ ∀i ∈ [n]

Some well-studied problems in combinatorial optimization that can be cast as binary optimization problems
include knapsack, subset-sum and certain variants of bin packing. For example, the knapsack problem asks
to maximize the value of the knapsack where the feasible set includes all possible choices of x ∈ {0, 1}
where

∑n
i=1 xi ≤ W where W denotes the maximum weight the knapsack can hold and vi denotes the

value of one unit of item i.

Definition 1. An algorithm for a binary optimization problem is said to take pseudo-polynomial time if it
takes O(poly(n, vmax)) time, i.e. polynomial in n and vmax where vmax = maxi∈[n] vi.

Many binary optimization problems such as knapsack can be solved in pseudo polynomial time, using
popular algorithmic approaches such as dynamic programming. Note that, O(poly(vmax)) is not polynomial
in the input length, where the length of the input is O(log(max{n, vmax})).

3 Towards Equivalence

We now demonstrate the equivalence between the class of problems which admit algorithms with smoothed
polynomial time algorithms and the class of problems which have pseudo-polynomial time algorithms.
We attempt to show this equivalence for binary optimization problems, although this equivalence holds
generally. We give a proof for the easier direction first.

3.1 Polynomial Smoothed Complexity =⇒ Pseudo-Polynomial Complexity

The crux of the argument exploits the gap between the value of the best solution for a binary optimization
problem and the value of the second-best solution. Such an argument establishing a separation between an
optimal solution and other solutions is referred to as an ”isolation lemma”.

Let V (1), V (2) denote the values of the best and the second-best solutions respectively. Without loss of
generality, we assume vi ∈ [0, 1]∀i ∈ [n] which can be obtained by scaling all values by 1

vmax
. A key

observation is that V (1) − V (2) ≥ 1
vmax

. To see this, note that the unscaled difference between the best and
second best solution is at least 1 since vi ∈ Z+ for all vi.

Given an algorithm A with smoothed polynomial time complexity, we are required to give a pseudo-
polynomial time algorithm A′ for binary optimization. The algorithm A′ is simple: it invokes the smoothed
polynomial time algorithm on a perturbed instance. Since our perturbation is small, it ensures that the
solution produced by the algorithm is indeed optimal.

Algorithm A′:

1. Perturb the values vi ∀i ∈ [n] according to a uniform distribution U(0, 1
nvmax

), i.e. vi ← vi + ri(σ)

where ri ∼ U(0, 1
nvmax

), σ = 1
nvmax

.

2. Run A on the perturbed input instance.

3. Return the solution obtained by A.

2

Let us first analyze the running time of A′ which clearly can be expressed in terms of the running time of A
on the perturbed instance. Since σ = 1

nvmax
, the running time ofA is O(poly(n, nvmax)) = O(poly(n, vmax)).

Thus, A′ is a pseudo-polynomial time algorithm.

What about the cost of the solution returned by A′? We claim that the optimal solution to the original
unperturbed problem instance is preserved under perturbation. To see this, consider the quantity V (1)−V (2)

in the perturbed instance. This is clearly bounded by n 1
nvmax

= 1
vmax

. Since V (1) − V (2) ≥ 1
vmax

in the
unperturbed instance, the optimal solution in the original instance stays optimal under the perturbed instance.

3.2 Pseudo-Polynomial Complexity =⇒ Polynomial Smoothed Complexity

To prove the other direction, given a pseudo polynomial time algorithmA taking time O(poly(n, vmax)), we
show how to obtain a smoothed poly-time algorithm A′ taking time O(poly(n, 1

σ)) for binary optimization
with probability at least 1− 1

n .

Analysis of ‘winner gap’ in the perturbed instance. The perturbation distribution is the uniform distri-
bution U(0, σ). We upper bound the probability of the best and second best solutions differing by at most
ϵ for some ϵ > 0. To this end, fix some i. We say that index i is ϵ-bad if the optimal solution with i
included is within ϵ of the optimal solution with i excluded. Let S+i denote the value of the best solu-
tion solution with i included–i.e. xi ̸= 0 and S−i denote the value of the best solution with i excluded.
Let S+i−i denote the quantity S+i − vi. Fixing the values of all vj where j ̸= i, and using the principle
of deferred decisions, we want to analyze Pr[i is ϵ − bad]. By the perturbation assumption, this happens if
S+i−i+vi+ri(σ) ∈ [S−i−ϵ, S−i+ϵ]. The probability of this happening is bounded by Pr[ri(σ) ≤ 2ϵ] ≤ 2ϵ

σ .
This yields the following lemma.

Lemma 1. Pr[V (1) − V (2) < ϵ] ≤ 2nϵ
σ

Proof. From the above discussion, the probability that any index i is ϵ-bad is given by 2ϵ
σ . If V (1)−V (2) < ϵ,

then this implies that some index i must be ϵ-bad. Taking a union bound over the n indices upper bounds
the probability of this event, which is 2nϵ

σ .

We now give the smoothed polynomial time algorithmA′. Thereafter, we refer to vi as the perturbed values.
Assume that vi for all i ∈ [n] is given in the bit representation. The algorithm essentially utilizes A by
iteratively examining the first b bits for b = 1, 2, 3, ...bp where bp is the bit precision of the representation,
runs A on the truncated values and checks if the solution returned by A is optimal for any possible setting
of the remaining bits. If yes, it returns the solution returned by A, otherwise considers one additional bit
and repeats the process.

Algorithm A′:

• For b = 1, 2, 3, ..., bp :

– Set vbi = vi up to b bits of precision for all i ∈ [n].

– Run A on instance {vbi}ni=1 to find the optimal solution xb.

3

– Check if xb is optimal for all possible choices of the remaining bits. If yes, return xb, else
continue.

We explain how A′ implements the third step to check optimality of xb. This is simple. Let S denote the
set of indices for which xi ̸= 0, and S̄ denote the remaining indices. Let vb∗i = vbi +

1
2b

for all i /∈ S and
vb∗i = vi for i ∈ S. We run A on the input {vb∗i }ni=1 and check if the optimal solution remains the same. If
yes, the algorithm returns xb, otherwise continues to another iteration of the for loop.

Clearly, the running time ofA′ depends on the number of iterations or bits we examine before converging to
an optimal solution. We prove the following theorem, thereby establishing thatA′ has smoothed complexity
O(poly(n, 1

σ)) with probability at least 1− 1
n .

Theorem 1. With probability at least 1− 1
n , A′ terminates after b = Θ(log(nσ)) iterations.

Proof. By Lemma 1, we know that Pr[V (1)− V (2) < ϵ] ≤ 2nϵ
σ . Consider iteration b. If |vbi − vi| ≤ 1

2b
, then

for any solution x, the value of the solution on the truncated values on b bits, {vbi}ni=1 differs by at most n
2b

.
Thus, if the winner gap |V (1) − V (2)| ≥ n

2b
, then the optimal solution for the instance truncated to b bits is

also optimal for the untruncated instance. We want the failure probability to be at most 1
n , so letting 2nϵ

σ < 1
n

yields ϵ < σ
2n2 , and requiring ϵ > n

2b
to preserve optimality implies n

2b
< σ

2n2 . This yields 2b ≥ 2n3

σ so that
setting b = Θ(log(nσ)) completes the proof.

The total running time of A is bounded within a b factor of the running time of A. The running time of A
is O(poly(n, vmax)), and since vmax can be represented by a value at most 2b = Θ(nσ), we obtain that the
running time of A′ is at most b ·Θ(nσ) = O(poly(n, 1

σ)) with probability at least 1− 1/n.

We have thus shown that if there is a pseudo-polynomial time algorithm for a binary optimization algorithm,
then there exists an algorithm that for any instance x yields an optimal solution for a perturbation of x in
time O(poly(n, 1

σ) with probability at least 1− 1/n. This can be generalized to show that for any δ > 0, the
algorithm takes time O(poly(n, 1

σ ,
1

1/δ) with probability at least 1 − 1/δ. Technically, this is not the same
as saying that there is a smoothed polynomial time algorithm since we have not bounded the expected time
for completion. We refer the reader to [BV06] for the stronger result.

References

[BV06] Rene Beier and Berthold Vöcking. Typical properties of winners and losers [0.2ex] in discrete
optimization. SIAM Journal on Computing, 35(4):855–881, 2006.

[Rou17] T. Roughgarden. Smoothed complexity and pseudo-polynomial time algorithms. Lecture notes,
available from https://timroughgarden.org/w17/l/l18.pdf, 2017.

4

https://timroughgarden.org/w17/l/l18.pdf

	Introduction
	Preliminaries
	Towards Equivalence
	Polynomial Smoothed Complexity -3mu Pseudo-Polynomial Complexity
	Pseudo-Polynomial Complexity -3mu Polynomial Smoothed Complexity

