Khoury College of Computer Sciences Fall 2023

Northeastern University 31 October 2023
CS 7870: Seminar in Theoretical Computer Science Scribe: Omer Wasim
Outline:

* Psuedo-polynomial time and smoothed analysis

» Equivalence for binary optimization problems

1 Introduction

In the previous lecture, we introduced smoothed analysis and saw an example of its utility in establishing a
polynomial time guarantee on the expected running time of a popular local search heuristic for TSP. In this
example, we go deeper and look at a stronger connection of smoothed complexity with pseudo polynomial
time algorithms. We study smoothed analysis in the context of binary optimization and present an amazing
result that shows that whenever a smoothed polynomial time algorithm exists, we can obtain a pseudo
polynomial time algorithm and vice versa! Thus, for a wide variety of problems that can be cast as binary
optimization instances, the smoothed complexity class and pseudo polynomial time complexity classes are
equivalent. The equivalence holds more generally, i.e. beyond binary optimization. In this lecture, we focus
attention on the the equivalence for binary optimization problems. The equivalence result is due to Beier
and Vocking [BVO06], and our presentation is based on the excellent lecture notes of Roughgarden [Roul7].

2 Preliminaries

Recall that the smoothed complexity of algorithm A is defined as,

S(n)= sup E,q)[c(A,x+1(0))]

z s.t. |z|=n

where ¢(A, z+ (o)) is the running time of algorithm of A on instance = + (o) where (o) is the perturba-
tion to x according to some distribution. A problem is said to admit a smoothed polynomial time algorithm,
if there exists an algorithm with smoothed complexity which is polynomial in the input size (i.e. n) and
%. As before, we assume that the perturbation is not spiky, and the probability density function f(x) of the
perturbation function satisfies f(z) < L.

Consider a binary optimization problem in canonical form:

n
max E VT4
=1

x € ' where I is a feasible set
z € {0,1}",v; € Z* Vi € [n]

Some well-studied problems in combinatorial optimization that can be cast as binary optimization problems
include knapsack, subset-sum and certain variants of bin packing. For example, the knapsack problem asks
to maximize the value of the knapsack where the feasible set includes all possible choices of = € {0,1}
where > "' 2; < W where W denotes the maximum weight the knapsack can hold and v; denotes the
value of one unit of item .

Definition 1. An algorithm for a binary optimization problem is said to take pseudo-polynomial time if it
takes O(poly(n, vmax)) time, i.e. polynomial in 7 and vynaz Where vmax = max;e) v;.

Many binary optimization problems such as knapsack can be solved in pseudo polynomial time, using
popular algorithmic approaches such as dynamic programming. Note that, O(poly(va.)) is not polynomial
in the input length, where the length of the input is O(log(max{n, vmax}))-

3 Towards Equivalence

We now demonstrate the equivalence between the class of problems which admit algorithms with smoothed
polynomial time algorithms and the class of problems which have pseudo-polynomial time algorithms.
We attempt to show this equivalence for binary optimization problems, although this equivalence holds
generally. We give a proof for the easier direction first.

3.1 Polynomial Smoothed Complexity —- Pseudo-Polynomial Complexity

The crux of the argument exploits the gap between the value of the best solution for a binary optimization
problem and the value of the second-best solution. Such an argument establishing a separation between an
optimal solution and other solutions is referred to as an isolation lemma”.

Let V() V(2 denote the values of the best and the second-best solutions respectively. Without loss of
generality, we assume v; € [0,1]Vi € [n] which can be obtained by scaling all values by ﬁ A key

observation is that V(1) — () > % To see this, note that the unscaled difference between the best and

second best solution is at least 1 since v; € Z* for all v;.

Given an algorithm A with smoothed polynomial time complexity, we are required to give a pseudo-
polynomial time algorithm A’ for binary optimization. The algorithm 4’ is simple: it invokes the smoothed
polynomial time algorithm on a perturbed instance. Since our perturbation is small, it ensures that the
solution produced by the algorithm is indeed optimal.

Algorithm A’:

1. Perturb the values v; Vi € [n] according to a uniform distribution U (0
where r; ~ U(0 L

N 7), o = .
NVUmax NVUmax

1 x), i.e. v; < v; + 7“1‘(0)

? NUma

2. Run A on the perturbed input instance.

3. Return the solution obtained by .A.

Let us first analyze the running time of A’ which clearly can be expressed in terms of the running time of A
on the perturbed instance. Since o = ~—, the running time of A is O(poly (n, nvmax)) = O(poly(n, vmax))-
Thus, A’ is a pseudo-polynomial time algorlthm

What about the cost of the solution returned by A’? We claim that the optimal solution to the original

unperturbed problem instance is preserved under perturbation. To see this, consider the quantity V(l) %48

in the perturbed instance. This is clearly bounded by n - 1 = Since V(D) — V(@ > o-— inthe

Umax

unperturbed instance, the optimal solution in the original 1nstance stays optimal under the perturbed instance.

3.2 Pseudo-Polynomial Complexity —> Polynomial Smoothed Complexity

To prove the other direction, given a pseudo polynomial time algorithm A taking time O(poly (7, Vmax)), We
show how to obtain a smoothed poly-time algorithm A’ taking time O(poly(n, %)) for binary optimization
with probability at least 1 — %

Analysis of ‘winner gap’ in the perturbed instance. The perturbation distribution is the uniform distri-
bution U (0, c). We upper bound the probability of the best and second best solutions differing by at most
e for some € > 0. To this end, fix some ¢. We say that index ¢ is e-bad if the optimal solution with
included is within € of the optimal solution with ¢ excluded. Let S; denote the value of the best solu-
tion solution with ¢ included-i.e. x; # 0 and S_; denote the value of the best solution with ¢ excluded.
Let Si;_; denote the quantity S;; — v;. Fixing the values of all v; where j # 4, and using the principle
of deferred decisions, we want to analyze Pr[i is € — bad]. By the perturbation assumption, this happens if
Syi—itvi+ri(o) € [S—i—¢, S_;+e€]. The probability of this happening is bounded by Pr[r;(0) < 2¢] < 2¢.
This yields the following lemma.

Lemma 1. Pr[V(1) — V(2) < ¢] < 2ne

[

Proof. From the above discussion, the probability that any index 7 is e-bad is given by % VO _v@ <
then this implies that some index ¢ must be e-bad. Taking a union bound over the n indices upper bounds
the probability of this event, which is 2"6 O

We now give the smoothed polynomial time algorithm A’. Thereafter, we refer to v; as the perturbed values.
Assume that v; for all i € [n] is given in the bit representation. The algorithm essentially utilizes A by
iteratively examining the first b bits for b = 1,2, 3, ...b, where b,, is the bit precision of the representation,
runs A on the truncated values and checks if the solution returned by A is optimal for any possible setting
of the remaining bits. If yes, it returns the solution returned by .4, otherwise considers one additional bit
and repeats the process.

Algorithm A’:

e Forb=1,2,3,....b, :

— Set v? = v; up to b bits of precision for all i € [n).

— Run A on instance {v}"_; to find the optimal solution .

— Check if zj is optimal for all possible choices of the remaining bits. If yes, return zy, else
continue.

We explain how A" implements the third step to check optimality of z. This is simple Let .S denote the
set of indices for which z; # 0, and S denote the remaining indices. Let vb* = v + 5 L foralli ¢ S and

b* = v; fori € S. We run A on the input {vb* * , and check if the optimal solution remains the same. If
yes, the algorithm returns z, otherwise continues to another iteration of the for loop.

Clearly, the running time of .4" depends on the number of iterations or bits we examine before converging to
an optimal solution We prove the following theorem, thereby establishing that A’ has smoothed complexity
O(poly(n, 1)) with probability at least 1 — 1

Theorem 1. With probability at least 1 — 1, A’ terminates after b = ©(log(Z)) iterations.

Proof. By Lemmal we know that Pr[V() — V() < ¢] < 2i€, Consider iteration b. If [0} — v;] < 217, then
for any solution z, the value of the solution on the truncated values on b bits, {v | differs by at most J;
Thus, if the winner gap |V | > 55, then the optimal solution for the 1nstance truncated tob bits is

also optimal for the untruncated instance. We want the failure probability to be at most , 80 letting <> 2ne %

yields € < 575, and requiring € > J; to preserve optimality implies 7 < 575. This yields 2b > QZ so that
setting b = ©(log(%)) completes the proof. O

The total running time of A is bounded within a b factor of the running time of .A. The running time of A
is O(poly(n, Umax)), and since vp,q, can be represented by a value at most 2° = ©(Z), we obtain that the
running time of A’ is at most b - ©(2) = O(poly(n, 2)) with probability at least 1 — 1/n.

We have thus shown that if there is a pseudo-polynomial time algorithm for a binary optimization algorithm,
then there exists an algorithm that for any instance x yields an optimal solution for a perturbation of z in
time O(poly(n, 7) with probability at least 1 — 1/n. This can be generalized to show that for any § > 0, the
algorithm takes time O(poly(n, U, 7/ 6) with probability at least 1 — 1/4. Technically, this is not the same
as saying that there is a smoothed polynomial time algorithm since we have not bounded the expected time
for completion. We refer the reader to [BV06] for the stronger result.

References

[BV0O6] Rene Beier and Berthold Vocking. Typical properties of winners and losers [0.2ex] in discrete
optimization. SIAM Journal on Computing, 35(4):855-881, 2006.

[Roul7] T. Roughgarden. Smoothed complexity and pseudo-polynomial time algorithms. Lecture notes,
available fromhttps://timroughgarden.org/wl7/1/118.pdf, 2017.

https://timroughgarden.org/w17/l/l18.pdf

	Introduction
	Preliminaries
	Towards Equivalence
	Polynomial Smoothed Complexity -3mu Pseudo-Polynomial Complexity
	Pseudo-Polynomial Complexity -3mu Polynomial Smoothed Complexity

