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Outline:

• Motivation

• Random Projection Theorem

• Johnson-Lindenstrauss Transform

The presentation of the material in this lecture is heavily drawn from Chapters 2 and 3 of the text by Blum,
Hopcroft, and Kannan [BHK20].

1 Motivation

Let’s consider a common task in high-dimensional data: nearest neighbor search. We are given a set S of n
points in Rd and are asked to find a point in S that is nearest a given query point. It is straightforward to solve
the problem in time polynomial in n, but in many applications n can be very large, and we cannot afford
to spend time dependent on n for every query. In Lecture 2, we explored the use of nets to solve nearest
neighbor efficiently for large n, when d is small; our running time was exponential in d and logarithmic in
the diameter of S. A challenge we face is that when n and d become very large, the preceding approaches
for the nearest-neighbors problem cannot be executed in a reasonable time. A clever approach to combat
this issue is to reduce the dimensionality of the dataset by projecting the points to a k-dimensional space
with k ≪ d while (approximately) preserving the pairwise distances between the points.

To do this, we will explore two ideas: the Random Projection Theorem and the Johnson-Lindenstrauss
Transform. Recall the Spherical Gaussian Annulus Theorem from previous lectures.

Theorem 1. Suppose x is drawn from a spherical Gaussian of dimension d with 0-mean and unit variance.
There exists a constant c > 0 such that with probability ≥ 1− 3e−cβ2

√
d− β ≤ ∥x∥ ≤

√
d+ β

2 Random Projection Theorem

Let’s first consider what happens when we project a unit vector v with a vector u taken from a 0-mean, unit
variance spherical Gaussian. Recall definition: v · u =

∑d
i=1 viui

E(v · u) =
d∑

i=1

vi · E(ui) = 0

Var(v · u) =
d∑

i=1

v2i · 1 = 1



This implies v · u is also a 0-mean, unit variance spherical Gaussian. Now let’s pick vectors u1, u2, · · · , uk
from a 0 mean, unit-variance spherical Gaussian and consider the projection f : Rd → Rk:

f(v) = (v · u1, v · u2, · · · , v · uk)

By above, we know that each of the coordinates of f(v) is a normally distributed variable with a mean of 0
and variance 1. Therefore, f(v) is a spherical Gaussian distributed variable with a mean of 0 and variance
of 1.

Because the random projection above is also a spherical Gaussian, the theorem below follows by the Gaus-
sian annulus theorem.

Theorem 2. Let v be a fixed vector in Rd and let f be the projection described above. There exists a constant
c > 0 such that for ϵ ∈ (0, 1), with probability ≤ 1− 3ecϵ

2k

√
k(1− ϵ) ≤ ||f(v)|| ≤

√
k(1 + ϵ)

3 Johnson-Lindenstrauss Transform

The theorem above states that the length of a projection of a single vector only differs from its expected
value with very low probability. We can then apply this to all pairwise distances in a given dataset. We can
use a union bound to say that all pairwise distances are preserved with high probability. This idea describes
the Johnson-Lindenstrauss Theorem explicitly stated below [JL].

Theorem 3. Let f be the random projection described above. Suppose v1, v2, · · · , vn are points in d-
dimension Euclidean space. For all ϵ ∈ (0, 1), if k ≥ 3 ln(n)

cϵ2
, then with probability 1− 3

n , for all i, j
√
k(1− ϵ)||vi − vj || ≤ ||f(vi)− f(vj)|| ≤

√
k(1 + ϵ)||vi − vj ||

Informally, this transforms points from a d-dimensional space to a k-dimensional space while (essentially)
preserving distances between points.

Proof. We know that f(vi) − f(vj) = f(vi − vj) because f is a linear transformation. It follows by the
Random Projection Theorem, with probability ≤ 1− 3e−cϵ2k, we have

√
k(1− ϵ)||vi − vj || ≤ ||f(vi)− f(vj)|| ≤

√
k(1 + ϵ)||vi − vj ||

To get the success probability of 1 − 3
n , we can bound the probability that any pair of points fails to be 3

n3 .
Therefore, we want

3e−cϵ2k = 3e−3 ln(n)

=
3

n3

=⇒ k =
3c ln(n)

ϵ2

2
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