Fall 2023
17 October 2023
Scribe: Eric Chapdelaine

CS 7870: Seminar in Theoretical Computer Science

Outline:

- Motivation
- Random Projection Theorem
- Johnson-Lindenstrauss Transform

The presentation of the material in this lecture is heavily drawn from Chapters 2 and 3 of the text by Blum, Hopcroft, and Kannan [BHK20].

1 Motivation

Let's consider a common task in high-dimensional data: nearest neighbor search. We are given a set S of n points in \mathbb{R}^{d} and are asked to find a point in S that is nearest a given query point. It is straightforward to solve the problem in time polynomial in n, but in many applications n can be very large, and we cannot afford to spend time dependent on n for every query. In Lecture 2, we explored the use of nets to solve nearest neighbor efficiently for large n, when d is small; our running time was exponential in d and logarithmic in the diameter of S. A challenge we face is that when n and d become very large, the preceding approaches for the nearest-neighbors problem cannot be executed in a reasonable time. A clever approach to combat this issue is to reduce the dimensionality of the dataset by projecting the points to a k-dimensional space with $k \ll d$ while (approximately) preserving the pairwise distances between the points.

To do this, we will explore two ideas: the Random Projection Theorem and the Johnson-Lindenstrauss Transform. Recall the Spherical Gaussian Annulus Theorem from previous lectures.

Theorem 1. Suppose x is drawn from a spherical Gaussian of dimension d with 0 -mean and unit variance. There exists a constant $c>0$ such that with probability $\geq 1-3 e^{-c \beta^{2}}$

$$
\sqrt{d}-\beta \leq\|x\| \leq \sqrt{d}+\beta
$$

2 Random Projection Theorem

Let's first consider what happens when we project a unit vector v with a vector u taken from a 0 -mean, unit variance spherical Gaussian. Recall definition: $v \cdot u=\sum_{i=1}^{d} v_{i} u_{i}$

$$
\begin{aligned}
\mathbb{E}(v \cdot u) & =\sum_{i=1}^{d} v_{i} \cdot \mathbb{E}\left(u_{i}\right)=0 \\
\operatorname{Var}(v \cdot u) & =\sum_{i=1}^{d} v_{i}^{2} \cdot 1=1
\end{aligned}
$$

This implies $v \cdot u$ is also a 0 -mean, unit variance spherical Gaussian. Now let's pick vectors $u_{1}, u_{2}, \cdots, u_{k}$ from a 0 mean, unit-variance spherical Gaussian and consider the projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$:

$$
f(v)=\left(v \cdot u_{1}, v \cdot u_{2}, \cdots, v \cdot u_{k}\right)
$$

By above, we know that each of the coordinates of $f(v)$ is a normally distributed variable with a mean of 0 and variance 1 . Therefore, $f(v)$ is a spherical Gaussian distributed variable with a mean of 0 and variance of 1 .

Because the random projection above is also a spherical Gaussian, the theorem below follows by the Gaussian annulus theorem.
Theorem 2. Let v be a fixed vector in \mathbb{R}^{d} and let f be the projection described above. There exists a constant $c>0$ such that for $\epsilon \in(0,1)$, with probability $\leq 1-3 e^{c \epsilon^{2} k}$

$$
\sqrt{k}(1-\epsilon) \leq\|f(v)\| \leq \sqrt{k}(1+\epsilon)
$$

3 Johnson-Lindenstrauss Transform

The theorem above states that the length of a projection of a single vector only differs from its expected value with very low probability. We can then apply this to all pairwise distances in a given dataset. We can use a union bound to say that all pairwise distances are preserved with high probability. This idea describes the Johnson-Lindenstrauss Theorem explicitly stated below [JL].

Theorem 3. Let f be the random projection described above. Suppose $v_{1}, v_{2}, \cdots, v_{n}$ are points in d dimension Euclidean space. For all $\epsilon \in(0,1)$, if $k \geq \frac{3 \ln (n)}{c \epsilon^{2}}$, then with probability $1-\frac{3}{n}$, for all i, j

$$
\sqrt{k}(1-\epsilon)\left\|v_{i}-v_{j}\right\| \leq\left\|f\left(v_{i}\right)-f\left(v_{j}\right)\right\| \leq \sqrt{k}(1+\epsilon)\left\|v_{i}-v_{j}\right\|
$$

Informally, this transforms points from a d-dimensional space to a k-dimensional space while (essentially) preserving distances between points.

Proof. We know that $f\left(v_{i}\right)-f\left(v_{j}\right)=f\left(v_{i}-v_{j}\right)$ because f is a linear transformation. It follows by the Random Projection Theorem, with probability $\leq 1-3 e^{-c \epsilon^{2} k}$, we have

$$
\sqrt{k}(1-\epsilon)\left\|v_{i}-v_{j}\right\| \leq\left\|f\left(v_{i}\right)-f\left(v_{j}\right)\right\| \leq \sqrt{k}(1+\epsilon)\left\|v_{i}-v_{j}\right\|
$$

To get the success probability of $1-\frac{3}{n}$, we can bound the probability that any pair of points fails to be $\frac{3}{n^{3}}$. Therefore, we want

$$
\begin{aligned}
3 e^{-c \epsilon^{2} k} & =3 e^{-3 \ln (n)} \\
& =\frac{3}{n^{3}} \\
\Longrightarrow k & =\frac{3 c \ln (n)}{\epsilon^{2}}
\end{aligned}
$$

References

[BHK20] Avrim Blum, John Hopcroft, and Ravi Kannan. Foundations of Data Science. Cambridge University Press, Cambridge, 2020.
[JL] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math., 26:189-206. Conference in modern analysis and probability.

