
Khoury College of Computer Sciences Fall 2023
Northeastern University 8 September 2023
CS 7870: Seminar in Theoretical Computer Science Scribe: Rajmohan Rajaraman

Lecture Outline:

• Roadmap of the course

• Clustering: the k-center problem

• Nets in metric spaces and nearest neighbor search

1 Roadmap of the course

This course presents a modern toolkit for algorithms and their analysis. The algorithmic techniques we plan
to cover in this class include greedy algorithms, local search, linear and convex programming, algebraic
methods, and variants of gradient descent. For analyzing algorithms, we will use classic worst-case methods
such as approximation ratios, competitive analysis, and regret bounds, as well as newer ”beyond worst-
case analysis” methods including perturbation stability, smoothed analysis, and tools for analyzing ML-
augmented algorithms. Here is a high-level outline of the course units and topics.

Clustering

• k-center, k-median, mixture of Gaussians, spectral clustering

• Greedy algorithms, linear programming, local search

• Approximation algorithms, perturbation stability, high-dimensional spaces

Linear programming

• Applications and algorithms

• Geometry and duality

Dimensionality reduction

• Clustering mixture of Gaussians, low-rank approximations and sparse recovery

• Principal Component Analysis, Singular Value Decomposition

Smoothed analysis

• Simplex algorithm and local search

• Equivalence with pseudo-polynomial time complexity

Optimization

• Gradient descent and stochastic gradient descent

• Multiplicative weights method and Follow-the-Regularized-Leader

Online algorithms

• Online learning and convex optimization

• Competitive analysis

• Algorithms with ML predictions

2 Clustering

We will begin the course with a topic that is well-understood and has wide applications: clustering. The
clustering problem is that of partitioning a given set of data points into clusters in which each cluster repre-
sents a collection of very similar points, while two points in different clusters are expected to be dissimilar.
Clustering is a canonical technique for unsupervised learning, and has many applications. The material in
this section and the next is partly based on the lecture notes of Chandra Chekuri [2, Section 9.1].

While the notion of clustering is intuitive and it is often easy for humans to visually evaluate the quality of
a clustering, there is no single optimization objectiveness that captures the goodness of clustering. There
are many compelling algorithms used for clustering in practice, and there are many mathematical problem
formulations. The twain do not always meet. We will use clustering as a vehicle to introduce interesting
algorithmic design and analysis techniques, with a motivation to bridge the gap between theory and practice.

Definition 1. The input to the Clustering problem is a set V of n points, with a distance function d :
V × V → R and a non-negative integer k ≤ n. The goal is to partition V into a collection C of k disjoint
subsets of V , which are called clusters. Different clustering problems can be defined by specifying different
measures of goodness of C.

We will be primarily interested in clustering problems where the underlying distance function forms a met-
ric. We refer to the pair (V, d) as a metric space.

Definition 2. A metric space (V, d) is a set V of points and a distance function d : V × V → R satisfying
the following properties:

• (Non-negativity) d(u, v) ≥ 0 for all u, v and d(u, v) = 0 if and only if u = v.

• (Symmetry) d(u, v) = d(v, u) for all u, v ∈ V .

• (Triangle Inequality) d(u,w) ≥ d(u, v) + d(v, w) for all u, v, w ∈ V .

2

In center-based clustering, we measure the goodness of a clustering C by associating a center ci with each
cluster Ci of C, and set the cost of C to be ∑

Ci∈C

∑
v∈Ci

d(v, ci)
p,

for some non-negative p. An alternative equivalent formulation of center-based clustering is to seek a set
X = {c1, . . . , ck} of k centers so as to minimize∑

v∈V
d(v,X)p,

where for any set S, we use d(v, S) to denote mins∈S d(v, s) Cluster Ci associated with center ci consists
of all points for which ci is the closest center, breaking ties arbitrarily.

Three popular choices for p yield three commonly studied center-based clustering problems.

• The k-center problem is obtained when p is set to ∞, where the objective can be revised as minimizing

max
v∈V

d(v,X)

• The k-median problem is obtained when p is set to 1.

• The k-means problem is obtained when p is set to 2.

3 The k-center problem

We consider the k-center problem when the distance function d forms a metric space; that is, d is non-
negative, symmetric, and satisfies the triangle inequality. We observe below that the k-center problem in
metric spaces is NP-hard. A natural approach to overcoming such evidence of intractability is to allow for
approximations. The approximation ratio of an algorithm A for a given minimization problem Π is

max
instance I of Π

cost of A for I
optimal cost for I

There is a rich theory of approximation algorithms, which classifies NP-complete problems according to the
approximation ratios that are achievable in polynomial time, subject to conjectures in complexity theory.
For more on approximation algorithms, please refer to the excellent texts by Williamson and Shmoys [7]
and Vazirani [6]. For instance, the k-center problem is covered in [7, Section].

We now present the NP-hardness of k-center in metric spaces. In fact, we will show that it is NP-hard to
even compute a c-approximation to k-center, for any c < 2.

Lemma 1. There is no polynomial-time c-approximation algorithm for metric k-center, with c < 2, unless
P = NP.

3

Proof. We present a reduction from the decision version of the minimum dominating set problem. In the
decision version of the minimum dominating set problem, we are given an undirected graph G and an
integer k, and the goal is to determine if there is a subset S of k vertices in G such that every vertex is in S
or adjacent to some vertex in S.

We construct the following k-center instance. We have a point for each vertex in G. The distance between
any two points is given by the length of the shortest path between the two in G. We now argue that there is a
dominating set of size k in G if and only if there is a k-center solution with cost strictly less than 2. If there
is a dominating set of size k, then there is a solution to the k-center problem with cost 1. Any solution to
the k-center problem that is better than 2-approximation has cost strictly less than 2; since all distances are
integral, the cost is, in fact, at most 1. Hence, every vertex is either one of the centers or is adjacent to one
of the centers. This implies the existence of a dominating set of size k.

It follows that any polynomial-time algorithm for k-center with approximation ratio strictly less than 2 can
be used to solve the minimum dominating set in polynomial time. Since the minimum dominating set
problem is NP-complete, the desired claim follows.

The following lemma lower bounding the optimal cost is key to establish the performance guarantee for
approximation algorithms for k-center.

Lemma 2. If S is a set of k + 1 points such that the distance between any pair of points in S is at least 2R,
then the optimal cost is at least R.

Proof. The proof is by contradiction. Suppose the optimal k-median cost is less than R, yet there exists a
set S of k + 1 points such that the distance between any pair of points in S is at least 2R. Let C be the set
of k centers of an optimal k-median solution. By the pigeon-hole principle, there exist two points in S that
belong to the same cluster, say with center c. By the bound on optimal k-median cost, the distance between
the two points is less than 2R, a contradiction to our assumption.

3.1 Gonzalez’s algorithm

A simple approach to attacking k-center is a greedy algorithm due to Gonzalez [3]. Start with an arbitrary
center, and repeatedly select the next center to be the point farthest from the current centers.

Theorem 1. In any metric space, Gonzalez’s algorithm yields a 2-approximation for the k-center problem.

Proof. Let C be the set of centers determined by Gonzalez’s algorithm. Let R denote the cost of the
solution. Let c1, c2, . . . , ck denote the k centers, and let v denote a point that is farthest from C. By
definition, v is at least R from each of the centers. Furthermore, the distance between ci and {c1, . . . , ci−1}
is at least R; otherwise ci would not have been chosen as the ith center since v would have been farther from
{c1, . . . , ci−1} than ci. Thus, we have a set of k+1 points such that the distance between any pair is at least
R. By Lemma 2, it follows that the optimal k-center cost is at least R/2, implying a 2-approximation for
Gonzalez’s algorithm.

Remark 1. A useful feature of Gonzalez’s algorithm is that it builds the k-center solution incrementally.
Thus, if we run the algorithm for n iterations, then for 1 ≤ k ≤ n the partial solution after k iterations is

4

a 2-approximate solution to the k-center problem. This means that for relevant applications we can build a
good k-center solution in a dynamic manner, adding a new center whenever we have enough resources to
open the next one.

3.2 Hochbaum-Shmoys’s algorithm

Another greedy algorithm for k-center, due to Hochbaum and Shmoys [4] is one which first guesses the cost
R∗ of the optimal solution, selects an arbitrary point as the first center, and then repeatedly finds a center, if
possible, that is more than 2R∗ away from the current set of centers. (If no such center exists, the iteration
terminates.) The algorithm runs for k iterations and returns the set of selected centers if there is no point at
distance more than 2R∗ away from the selected centers.

Before analyzing the approximation ratio of the algorithm, let us analyze its running time. A naive imple-
mentation of iteration i processes (i − 1)(n − i + 1) distances; the total running time can be bounded by
O(k2n). What about guessing R∗? Well, there are at most

(
n
2

)
possible values for R∗, so one can conduct a

binary search over these values and select the smallest value of R∗ for which the algorithm returns a set of
centers.

Theorem 2. In any metric space, the Hochbaum-Shmoys algorithm computes a 2-approximation to k-center.

Proof. Let R∗ denote the optimal cost for the k-center instance. We argue that after selection of k centers,
the distance of any point v from its closest center is at most 2R∗. Let C be the set of k centers. By the
design of the algorithm, the distance between any two centers in C is greater than 2R∗. Suppose, for the
sake of contradiction, there exists a point v that is at distance greater than 2R∗ from C. Then, it follows that
C ∪ {v} is a set of k + 1 points such that the distance between every pair of points is greater than 2R∗. By
Lemma 2, it follows that the optimal k-center cost is greater than R∗, yielding a contradiction.

4 Nets in metric spaces

The k-center algorithms presented above compute a set of well-separated centers such that every point is
within a certain distance from its closest center. Such a collection of centers in a metric space is referred
to as a net, and has been extensively used in solving distance-related problems. We formally present the
concept of nets in metric spaces and discuss its application in nearest neighbor search. The material for this
section is partly drawn from notes due to Sanjeev Arora [1].

Formally, we define an ε-net of a metric space as follows.

Definition 3. An ε-net of a metric space (X, d) is a subset S of X satisfying the following properties:

• For any u, v ∈ S, we have d(u, v) ≥ ε.

• For any x ∈ X , we have d(x, S) < ε.

It is straightforward to construct an ε-net for any finite metric space: Start with S = {s} for an arbitrary
point s ∈ X; repeatedly add x to S where x is an arbitrary point satisfying d(x, S) ≥ ε, until there is no

5

such x; return S. Clearly, the procedure terminates since every iteration adds a point to S and X is finite. By
construction, any point added to S is at least ε away from all points to S, satisfying the first property. The
second property holds at termination since there is no point x remaining that has d(x, S) ≥ ε. The above
construction also extends to infinite metric spaces (assuming Zorn’s Lemma). For R, an ε-net is any set of
the form {x+ nε : n ∈ Z}.

Definition 4. The doubling dimension of a metric space (X, d) is the smallest integer k such that every
subset S ⊆ X can be covered by at most 2k sets of diameter at most half the diameter of S.

It is easy to see that the doubling dimension of Rd is d.

Lemma 3. For any metric space with diameter D and doubling dimension m, the size of an ε-net is
(
2D
ε

)m
.

Proof. We prove by induction on i that for any metric space with diameter 2iε and doubling dimension m
can be covered by at most 2im sets, each of diameter at most ε. The induction base, i = 0, is immediate. For
the induction step, suppose the claim holds for i = k. Any metric space with diameter 2k+1ε and doubling
dimension m can be covered by at most 2m sets, each of diameter at most 2kε. Each of these sets is a
metric space of diameter 2kε and can be covered by at most 2km sets of diameter at most ε. Therefore, the
metric space of diameter 2k+1ε can be covered by at most 2(k+1)m sets of diameter at most ε, completing
the induction step. Therefore, any metric space with diameter D and doubling dimension m can be covered
by at most 2(1+log2(D/ε))m sets of diameter at most ε.

Any ε-net of the metric space has at most one point from a set of diameter at most ε. Thus, any ε-net of a
metric space of diameter D and doubling dimension m has size at most

(
2D
ε

)m
.

5 Application of nets to nearest neighbor search

The nearest neighbor problem is the following: given a metric space (X, d), a subset S ⊆ X , and a point
x ∈ X , return the point y in S that minimizes d(x, y). The nearest neighbor problem has many applications,
the most notable one being its use in machine learning. A common approach to classification is to associate
a metric space among data items, and classifying each new data item by the label of the nearest neighbor in
the training. Variants of nearest neighbor classification include using an average, distance-weighted average,
or majority label of k nearest neighbors.

An easy solution to the nearest neighbor problem takes time O(|S|) by going over all the distances from S
to the new point x. But this is excessive in situations where S and the number of new points to be classified
are both large. We now consider an alternative approach, using ε-nets, of calculating approximate nearest
neighbors in O(logD) time, for metric spaces with diameter D and constant doubling dimension. This is
due to Krauthgamer and Lee [5]. For simplicity, in this lecture, we will present a 3-approximation algorithm;
using some more sophistication, we can compute a (1 + ε)-approximation.

The idea for the algorithm is similar to the concept of quad-trees extensively used in databases and data
structures. We maintain ε-nets of different ”scales”. We assume, without loss of generality, that the mini-
mum distance in the metric is 1 and the diameter of the metric is D. For simplicity, we assume that D is a
power of 2. Let Yi denote a 2i-net, for each 1 ≤ i ≤ k, where k = log2D. Note that Yk is a singleton set.
Let q denote the query point.

6

The nearest neighbor algorithm maintains for each 1 ≤ i ≤ k, the 2i-net Yi, and for each point y ∈ Yi, a set
Ly,i of nearby points from Yi−1, defined as follows:

Ly,i = {z ∈ Yi−1 : d(y, z) ≤ c2i},

for a constant c that we will set shortly.

Given a query q, the algorithm proceeds as follows.

1. Set y to be the unique point in Yk, and i = k.

2. While d(q, Ly,i) ≤ 3 · 2i−1: set y to be the point in Li,y nearest to q and i = i− 1.

3. Return y

Theorem 3. The above algorithm returns a 3-approximation to the nearest neighbor problem.

Proof. Let y denote the point returned by the algorithm and let i be such that d(q, Ly,i) > 3 · 2i−1. By the
definition of the algorithm, we have d(q, y) ≤ 3 · 2i.

Let v denote the nearest neighbor for q. Let p denote the point in Yi−1 closest to v. Then, we have d(p, v) ≤
2i−1. We argue that p is in Ly,i. We have d(p, y) ≤ d(p, v)+ d(v, q)+ d(q, y) ≤ 2i−1+2d(q, y) ≤ 6.5 · 2i.
If we set c to be at least 6.5, we have p in Ly,i.

We now show that d(q, v) ≥ 2i. We have d(q, v) ≥ d(q, p)−d(p, v) ≥ 3 ·2i−1−2i−1 = 2i. This completes
the proof of the theorem.

We now analyze the running time of the above approximation algorithm for nearest neighbor search. Note
that the nets Yis and the corresponding sets Ly,i are all pre-computed. Given a query q, the total running
time is at most k times the size of each Ly,i.

We now place an upper bound on |Ly,i| for any y and i. Each point in Ly,i is within 6.5 · 2i of y, therefore
the diameter of Ly,i is at most 13 · 2i. If the doubling dimension of the metric space is m, then Lyi can be
covered by at most 2m⌈log2(26)⌉ = 25m sets of diameter at most 2i−2. Since the points in Ly,i are separated
from one another by at least 2i−1, at most one of these points can occupy any set of diameter at most 2i−2.
Therefore, |Ly,i| is at most 25m, thus bounding the time per query to be at most 25m log(∆). For constant
m, this time is, in fact, independent of the size of S and only logarithmic in the diameter of the metric space.
As mentioned above, the algorithm can be refined to also achieve an (1 + ε) approximation to the nearest
neighbor problem, for arbitrary ε > 0 by choosing nets at more scales and storing distance thresholds in the
algorithm more carefully.

References

[1] Sanjeev Arora. Two notions of ε-nets and applications. https://www.cs.princeton.edu/
courses/archive/fall07/cos597D/Site/lec12.pdf.

7

 https://www.cs.princeton.edu/courses/archive/fall07/cos597D/Site/lec12.pdf
 https://www.cs.princeton.edu/courses/archive/fall07/cos597D/Site/lec12.pdf

[2] Chandra Chekuri. Approximation algorithms. https://courses.engr.illinois.edu/
cs583/fa2021/approx-algorithms-lecture-notes.pdf.

[3] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci.,
38:293–306, 1985.

[4] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem. Math.
Oper. Res., 10(2):180–184, 1985.

[5] Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for proximity search. In
J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 798–807. SIAM, 2004.

[6] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

[7] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, 2011.

8

https://courses.engr.illinois.edu/cs583/fa2021/approx-algorithms-lecture-notes.pdf
https://courses.engr.illinois.edu/cs583/fa2021/approx-algorithms-lecture-notes.pdf

	Roadmap of the course
	Clustering
	The k-center problem
	Gonzalez's algorithm
	Hochbaum-Shmoys's algorithm

	Nets in metric spaces
	Application of nets to nearest neighbor search

