Problem Set 3 (due Monday, October 25)

1. (5 + 5 = 10 points) Minimum-length encoding

This is a continuation of Problem 4 of PS2. Recall that Alice and Bob are using an encoding scheme based on a set \(S \) of \(m \) code words that they both share. Alice wants to send a data string \(D \) of length \(n \) to Bob. In this exercise, we assume that \(S \) is an arbitrary set of \(m \) code words.

(a) Design an efficient algorithm to determine a minimum-length encoding of a given string \(D \) using code words from \(S \). If no such encoding exists, then the algorithm must indicate so. Analyze the worst-case running time of your algorithm.

(b) Of course, the encoding scheme above is probably useful for a given string \(D \) only if there is a unique minimum-length encoding of \(D \) using code words from \(S \). Enhance your algorithm of part (a), or give a new algorithm, which determines whether there exists exactly one minimum-length encoding of \(D \) using code words from \(S \). Analyze the worst-case running time of your algorithm.

For both parts, make your algorithm as efficient as you can, in terms of its worst-case running time.

2. (10 points) Matroids

Exercise 16.4-4 of text.

3. (10 points) Resource reservation in video transmission

Consider the following resource reservation problem arising in video transmission. We are given a video in the form of a sequence of \(n \) frames. We are also given that frame \(i \) requires the reservation of at least \(s_i \) units of bandwidth along the transmission link. Since reserving resources separately for each frame may incur a significant overhead, we would like to partition the video into at most \(k \) segments (where \(k \) is usually much smaller than \(n \)), and then reserve bandwidth for each segment. Note that each segment is simply a set of contiguous frames and that the segments may be of different lengths.

The amount of bandwidth that we need to reserve for a segment is the maximum, over all frames in the segment, of the bandwidth required for the frame. Formally put, for a given segment \(S \), the bandwidth \(B(S) \) required for the segment equals \(\max_{i \in S} s_i \).

Given a partition of the video into \(k \) segments \(S_1, S_2, \ldots, S_k \), we define the total bandwidth requirement of the partition as the following summation:

\[
\sum_{1 \leq i \leq k} f(S_i) \cdot B(S_i),
\]

where \(f(S_i) \) is the number of frames in segment \(S_i \).
Design an efficient algorithm to partition a given n-frame video into k segments such that the total bandwidth requirement of the partition is minimized. Justify the correctness of your algorithm. Analyze the worst-case running time of your algorithm. Make your algorithm as efficient as you can, in terms of its worst-case running time.

4. (5 + 5 = 10 points) Viterbi algorithm for speech processing

5. (5 + 5 = 10 points) Recomputing shortest paths when source changes

Suppose you are given a directed graph $G = (V, E)$ with real weights on edges, a source s, and a number $d[v]$ for each $v \in V$ that supposedly gives the shortest path distance from s to v in G. Let m and n denote the number of edges and vertices, respectively, of G.

(a) Give a linear-time algorithm ($O(m + n)$ time) that determines whether the collection of distances given by $d[v], v \in V$, is indeed correct.

(b) Now suppose you are asked to compute the single-source shortest path distances from a different source s'. We can use the Bellman-Ford algorithm to compute these distances in $O(mn)$ time. Since edge weights may be negative, we cannot directly use Dijkstra’s algorithm. We can, however, use the distances $d[v]$ already computed to compute the shortest path distances from s' faster than simply invoking Bellman-Ford, if $d[v]$ is finite for all v.

Show how to compute these new shortest path distances in $O(m \log n)$ time. (Hint: Design new edge weights that allow you to use Dijkstra’s algorithm.)