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Topics covered:

• Approximation algorithms

• Set cover

• Greedy algorithm for set cover

• Rounding an LP relaxation for set cover

Good references for the material covered in this lecture are the classic text on algorithms [CLRS01],
a nice set of lecture notes prepared by Rajeev Motwani [Mot92], and an excellent text on approxi-
mation algorithms by Vijay Vazirani [Vaz03]. These notes are based on material taught in previous
courses on advanced algorithms – thanks to NU graduate San Tan.

1 Approximation algorithms

A major focus of this course is on the study of hard optimization problems. Many of these problems
fall in the class of problems referred to as NP-complete. It is widely believed that no NP-complete
problem can be solved optimally in polynomial time. We can relax our requirements in several
ways:

• Super-polynomial time algorithms: Instead of requiring poly-time algorithms, we may
demand a slightly super-polynomial time algorithm. Indeed, for certain problems such as
Knapsack, we can obtain efficient slightly super-polynomial time algorithms that solve the
probem optimally. It turns out, however, that the fastest known algorithms for almost all of
the interesting NP-complete problems is exponential time.

• Focus on a subset of the instances: We can also relax our objective by focusing on a
subset of the instances, rather than demanding that we solve every instance optimally. The
trouble with this approach is to define the particular subset of instances we are interested
in. While it may be possible to define the notion of a “random instance” in some cases and
analyze the expected running-time of algorithms by probabilistic means, this is difficult to
justify for most problems.

• Fixed-parameter tractability: Another approach that has gained attention recently for
certain problems is to study the fixed-parameter complexity of the problem. For some prob-
lems, it may be possible to devise algorithms that are polynomial in the input size and
superpolynomial in a parameter of the problem that is usually small for many applications.
For example, there exists an algorithm for the vertex cover problem in time O(kn+ 1.274k),
where n is the number of nodes in the vertex cover graph and k is the size of the vertex cover
found. If the size of the min-vertex cover is small, then the preceding algorithm could be
efficient. Even though the area is fairly new (since 1999), there is already a book out [Nie06].



• Approximation algorithms: A fourth relaxation, which is the one we will discuss during
part of this course, is to allow for approximate solutions. That is, rather than solving optimally
for every instance, we will demand polynomial-time algorithms that solve near-optimally for
every instance.

What does “near-optimal” mean? One notion of approximation is that of an absolute performance
guarantee, in which the value of the solution returned by the approximation algorithm differs from
the optimal value by an absolute constant. Let Π be an optimization problem and let I be an
instance of Π. Given an algorithm A for Π, let A(I) denote both the solution as well as the value of
the solution returned by A on instance I. Also, let OPT(I) denote the optimal value for instance
I.

Definition 1. An approximation algorithm A for problem Π has an absolute performance
guarantee of k if for the following condition holds for all instances I of Π:

|A(I)−OPT(I)| ≤ k.

While this notion is useful for certain problems such as the minimum-degree spanning tree problem,
it turns out to be inappropriate for most NP-complete problems. The notion of approximation that
is most widely used is that of a relative performance guarantee, which we now define.

Definition 2. An approximation algorithm A for problem Π has an approximation ratio of r if
the following condition holds for all instances I of Π:

A(I)
OPTI

= r.

2 Set cover

The set cover problem plays a central role in the study of approximation algorithms. It has numer-
ous applications in diverse areas and several other fundamental optimization problems are natural
generalizations of set cover. It is also a very useful problem to demonstrate several fundamental
techniques developed in the area of approximation algorithms.

Problem 1. Given a universe U = {e1, . . . , en} of n elements, a collection S of m subsets of U , and
a cost function c : S → Q+, the set cover problem seeks a minimum-cost subset of S that covers
all elements of U .

The set cover problem is NP-complete, so we seek good approximation algorithms. The first
algorithm that comes to mind for the set cover problem is the following greedy algorithm.

Repeat the following step until all elements of U are covered: select a set S ∈ S that has the least
ratio of cost to the number of uncovered elements in S.

It is relatively easy to see that the greedy algorithm is not optimal. How far from optimal can it
be? Here is a preliminary analysis. Let OPT denote the optimal solution to a given instance and
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let c(OPT) denote the cost of OPT. At any instant, define the normalized cost of a set S to be the
ratio of c(S) to the number of uncovered elements in S.

First Analysis: Divide the algorithm’s progress into phases, starting from phase 0. In the ith
phase, the number of uncovered elements is in [n/2i, n/2i+1). Therefore, the normalized cost of sets
selected in the ith phase is always at most c(OPT)/(n/2i+1). Since the number of elements covered
in the ith phase is at most n/2i, the cost of the sets added in the ith phase is at most 2c(OPT).
The total number of phases is at most lg n. Therefore, the total cost of the greedy solution is at
most 2 lg nc(OPT), establishing that the approximation ratio of the greedy algorithm is at most
2 lg n.

Second Analysis: A more accurate analysis can be given by the following direct argument. Let S1

denote the first set selected by the greedy algorithm, and let OPT denote the cost of the optimal
solution. We claim that c(S1)/|S1| is at most c(OPT)/n. This is because if every set S of the
optimum solution had c(S)/|S| exceed c(OPT)/n, then the total cost of the optimum solution,
which equals

∑
s∈OPT c(S) exceeds c(OPT)

∑
S∈OPT |S| > OPT, a contradiction.

We can use the same argument to derive that if S2 is the second set selected by the greedy algorithm,
then c(S2)/|S2−S1| is at most c(OPT)/(n−|S1|). In general, if Si is the ith set selected, we obtain

c(Si)
|Si − ∪j<iSj |

≤ OPT
n− ∪j<iSj

.

Summing over all i, we obtain that the cost of the greedy algorithm is at most

c(OPT)
(
|S1|
n

+
|S2 − S1|
n− |S1|

+
|S3 − (S1 ∪ S2)|
n− |S1 ∪ S2|

+ · · ·+ |Si − ∪j<iSj |
n− | ∪j<i Sj |

+ · · ·
)

≤ c(OPT)
(

1
n

+
1

n− 1
+ · · ·+ 1

1

)
= c(OPT)Hn.

Third Analysis: Here is another slicker proof that the greedy algorithm has approximation ratio
Hn.

Define the price of an element to be the average cost at which it is covered. Let e1, e2, . . . , en denote
the elements in the order they were covered.

Lemma 1. The price of element ei is at most OPT/(n− i+ 1).

Proof. At the instant element ei is covered, there are at least n−i+1 uncovered elements. Therefore,
there exists a set in the optimal solution that has a cost-effectiveness of at most OPT/(n− i+ 1).
Since ei is covered in this step, its price is at most OPT/(n− i+ 1).

Theorem 1. The approximation ratio of the greedy algorithm is at most Hn.

Proof. The cost of a selected set is simply the sum of the prices of the new elements it covers.
Thus, the cost of the greedy solution is simply the sum of the prices of all the elements, which,
according to Lemma 1, is upper bounded by

OPT

n∑
i=1

1
n− i+ 1

= OPT ·Hn.
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3 Rounding an LP relaxation for set cover

We formulate a linear programming relaxation for the set cover problem.

min
∑
S∈S

cSxS

s.t.
∑
e∈S

xS ≥ 1;∀e ∈ U

xS ≥ 0;∀S ∈ S
xS ∈ [0, 1],∀S ∈ S

Suppose {x∗S} is an optimal solution for above LP problem. Notice x∗S could be a fractional value
between 0 and 1. In order to apply the LP solution back to the set cover problem, we need to
round {x∗s}. Let us consider two natural rounding methods.

• Nearest rounding:

x∗S ≥
1
2
→ xS = 1

x∗S <
1
2
→ xS = 1

• Randomized rounding: Interpret xs as a probability that set s is selected.

To analyze the rounding approaches, we must ask two questions:

• q1: What’s the cost of rounding algorithm (compared with optimal cost given by LP)?

• q2: Are all elements covered?

For nearest rounding, consider this scenario: for every set S that contains a given element e, we
have x∗S <

1
2 . In this case, e will definitely not be covered after rounding. It is easy to construct

examples where this is the case for all elements. This scenario is surely undesirable.

Let’s consider randomized rounding.

• q1: Suppose X = collection of selected sets after randomized rounding. Then the total cost
is

C(X) =
∑
S∈X

c(S).
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The expected total cost is

E[C(X)] =
∑
S∈X

Pr[S ∈ X] · c(S)]

=
∑
S∈X

x∗Sc(S)

= OPTLP

≤ OPT

So the expected cost of randomized rounding is as good as the LP cost, which we know is a
lower bound on the cost of an optimal set cover.

• q2: For an element e, assume that it occurs in sets s1, s2, ..., sk. The probability that e is not
covered is

pē =
∏

i=1,··· ,k
(1− x∗si

)

Since x∗s1 + x∗s2 + · · ·+ x∗sk
≥ 1, we have

pē = (1− xs1)(1− xs2) · · · (1− xsk
)

≤
(

1− 1
k

)k
≤ 1

e

So the probability that e is covered by X is

pe = 1− pē ≥ 1− 1
e
.

The expected cost of randomized rounding is good, but we have not guaranteed that all elements
are covered. In fact, there is a very good chance that all the elements are not covered. On the other
hand, any given element is covered with at least a constant non-zero probability. An improvement
to the simple randomized rounding is to repeat randomized rounding for t times and combine the
result

X =
t⋃
i=1

Xi,

in which Xi is the result of ith randomized rounding. The improved randomized rounding has

E[C(X)] ≤ t ·OPT,

Pr[given element is not covered] ≤ 1
et
.

Then the probability that at least one element is not covered is

Pr[some element is not covered] ≤
∑
ei∈U

Pr[eiis not covered]

= n
et
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(Note that Pr[some element is not covered] is not equal to 1 − (1 − 1
et )n, since the events defined

by the coverage of each element are not independent.)

Given a threshold ε, we now compute how many rounds of randomized rounding are needed to
assure that the probability that some element is not covered is lower than ε.

n

et
≤ ε⇒ t ≥ ln

n

ε
.

So a solution that repeats randomized rounding for ln(nε ) times and return X =
⋃t
i=1Xi satisfies

E[C(X)] ≤ OPT · ln(
n

ε
),

p[X is not a valid solution] ≤ ε.

From Markov’s inequality pr[Y ≥ α] ≤ E[Y ]
α , we have

ps[C(X) ≥ 4 ·OPT · ln(
n

ε
)] ≤ E[C(X)]

4 ·OPT · ln(nε )
≤ 1

4
.

If we set ε = 1
4 ,

p[X is valid and C(X) ≤ 4 ·OPT · ln(4n)] ≥ 1
2
,

and corresponding algorithm is

1. Solve LP;

2. Repeat randomized rounding for ln(4n) times and get a solution X =
⋃t
i=1Xi;

3. If C(X) ≥ 4 ·OPT · ln(4n) or X is not valid, go back to step 2; otherwise return X as a final
solution.

The expected number of iterations of step 2 of the above algorithm before the algorithm terminates
is at most 2. In fact, the probability that the algorithm terminates in T iterations is at least
1− 1/2T .
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