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Transmission Fundamentals

• Signals

• Data rate and bandwidth

– Nyquist sampling theorem
– Shannon capacity theorem

1 Signals

Any electromagnetic signal (actually, any function f(t) that is square-integrable) can be expressed
as a superposition of sinusoidal waves. A general sinusoidal signal is given by the function s(t) =
A sin(2πft+φ), where A is the amplitude (usually in volts), f is the frequency, and φ is the phase.
A more accurate way of stating this is using Fourier analysis and Fourier transforms, as follows.

s(t) =
∫ +∞

−∞
S(f)ei2πftdf

S(f) =
∫ +∞

−∞
s(t)e−i2πftdt.

The function S(f) is referred to as the Fourier transform of s(t), and captures how the energy of
the signal s(t) is distributed within the frequency spectrum.

Studying signals in the frequency domain greatly faciliates our understanding of how signals are
transmitted. A channel takes as input an input signal s(t) and outputs a signal r(t). A channel
can be typically described by its impulse response function h(t) which is the channel output corre-
sponding to an infinitesimally narrow pulse of unit area at time t. Given an input s(t) to a channel
with impulse response h(t), the output r(t) is given by

r(t) =
∫ +∞

−∞
s(τ)h(t− τ)dτ.

Using the Fourier transform equations, we obtain:

r(t) =
∫ +∞

−∞

(
h(t− τ)

∫ +∞

−∞
S(f)ei2πfτdf

)
dτ

=
∫ +∞

−∞

(
S(f)

∫ +∞

−∞
h(t− τ)ei2πfτdτ

)
df

=
∫ +∞

−∞
S(f)ei2πft

∫ +∞

−∞

(
h(t− τ)e−i2πf(t−τ)dτ

)
df

=
∫ +∞

−∞
S(f)ei2πft

∫ +∞

−∞

(
h(τ)e−i2πfτdτ

)
df

=
∫ +∞

−∞
S(f)H(f)ei2πftdf.



If R(f) is the Fourier transform of r(t), then we obtain the following simple input-output relation
in the frequency domain

R(f) = S(f)H(f).

The absolute bandwidth of the signal s(t) (resp., a channel with impulse response h(t)) is the range
of frequencies f in which S(f) 6= 0 (resp., H(f) 6= 0). The effective bandwidth, or simply, the
bandwidth of the signal is the range within which most of the energy is concentrated. The energy
of a signal s(t) (per unit resistance) is given by∫ +∞

−∞
s(t)2dt.

It can be shown that any periodic signal s(t) with frequency f has non-zero frequency components
only at frequencies that are multiples of f . That is, a periodic signal s(t) with frequency f can be
expressed as:

s(t) =
∞∑

n=−∞
Sne

2πinft.

A periodic square wave with amplitude A and −A can be expressed as follows.

s(t) = A× 4
π

∑
odd k

sin(2πkft)
k

.

2 Data rate and bandwidth

Suppose we superpose sinusoids of frequencies f , 3f , and 5f , then we get a wave that resembles a
square wave with 3 peaks per half cycle. The bandwidth of the signal is 5f − f = 4f . In a time
interval of 1/f seconds, two bits have been transmitted, achieving a bit rate of 2f . If we double
the frequency f , this doubles the bandwidth and hence also doubles the bit rate. If we reduce the
bandwidth, say by using only sinusoids f and 3f , then we can achieve the same bit rate, but the
signal has a higher chance of being misinterpreted since it is “farther” from the desired square wave
(and hence can cause more errors).

In general, the question relating bit rate and channel bandwidth is not about what bit rate can a
given channel bandwidth support since over any finite length of time, there is a non-zero probability
that every bit transmitted is in error. Consequently, any discussion of capacity of a channel has to
be done together with the notion of an error rate. Shannon framed the capacity question as: given
a particular channel bandwidth, what is the maximum rate at which information can be sent, for
a given error rate? Shannon’s channel coding theorem gives a surprising answer to this question,
which implies that non-zero information rate is achievable even for an arbitrarily low required error
rate.

Theorem 1 (Nyquist Sampling Theorem) [Sta05, Section 6A] Any signal s(t) that contains
no frequency component more than W Hz is completely determined by its values at times j/2W ,
where j is an integer in the range [−∞,+∞].
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Proof: Consider a periodic pulse function p(t) that consists of a unit pulse (Dirac delta function)
every T = 1/2W seconds. Since any periodic function can be expressed as a sum of sinusoidals
with frequencies that are multiples of the function, we have

p(t) =
∞∑

n=−∞
Pne

i(2πn/T )t

for some appropriate values of Pn. Let the input signal be s(t) with Fourier transform S(f). The
sampled signal x(t) can be written as

x(t) = s(t)p(t) =
∞∑

n=−∞
Pns(t)ei(2πn/T )t.

Therefore, the Fourier transform of the sampled signal is

X(f) =
∫ +∞

−∞

∞∑
n=−∞

Pnx(t)ei(2πn/T )te−i2πftdt

=
∫ +∞

−∞

∞∑
n=−∞

Pnx(t)e−i2π(f−n/T )dt.

We also have
S(f − n/T ) =

∫ +∞

−∞
x(t)e−i2π(f−n/T )dt.

Therefore, we obtain

X(f) =
+∞∑
−∞

PnS(f − n/T )

We know that S(f) = 0 for |f | ≥ W . Since 1/T = 2W , we obtain that for −W ≤ f ≤ W ,
X(f) = P0S(f). Thus the frequency spectrum of s can be entirely determined by the frequency
spectrum of the sampled signal x.

There are several different proofs of the Nyquist sampling theorem. One equality that directly
captures the equivalence of the band-limited signal s and the sample x is the following.

s(t) =
∞∑

n=−∞
xn

sin(π(2Wt− n))
π(2Wt− n)

(1)

Theorem 2 (Shannon Capacity Theorem) [Sha49] Let P be the average transmitted power,
and suppose the noise of white thermal noise of power N in the frequency band W . Then, there
exists an encoding scheme that allows to transmit bits at a rate

C = W log2

P +N

N

with as small an error probability as desired. It is not possible by any encoding method to send at
a higher rate and have an arbitrarily low frequency of errors.
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Proof Sketch: We consider a signal s(t) over an interval of period T . Using Nyquist sampling,
we specify the signal using 2TW samples x1 through x2TW . Using Equation 1 and the energy
formula, one can show that the energy E (into unit resistance) of the signal s(t) equals

∫ ∞
−∞

s(t)2dt =
1

2W

2TW∑
n=1

x2
n.

So if d is the distance of the point (x1, x2, . . . , xn) from the origin, then we have

d2 = 2WE = 2WPT,

where P is the average signal power during the period of length T . Thus any signal over time
period T with average power at most P can be represented by a point in a ball of radius

√
2WPT

in 2WT -dimensional space.

We now consider the effect of additive white Gaussian noise (AWGN) on this signal. An AWGN
signal has the property that each sample is perturbed independently of all others and the distri-
bution of the perturbation is Gaussian with standard deviation

√
N where N is the average noise

power.

It can be shown that for any desired error probability ε, if T is sufficiently large, then the noise
causes the perturbation to lie within a ball of radius

√
2WNT from the signal point (x1, . . . , x2WT )

with probability 1− ε.

When transmitting the information, we need to make sure that two signals carrying different
information should not be decoded as the same. So we need to select signal points such that the
balls of radius

√
2WNT around them do not intersect. How many such signal points can we select?

The answer is essentially the ratio of the volume of the ball of radius
√

2WT (N + P ) to that of√
2WNT . For 2WT -dimensional space, this ratio equals

M =

(√
2WT (N + P )√

2WNT

)2TW

=
(
P +N

N

)TW
.

It is fairly easy to see, using a ball-packing argument, that the right-hand-side is an upper bound
on M . To see the lower bound, Shannon gave a much more involved argument. It relies on random
coding, in which we map each of M pieces of an information to a random point in the ball of radius√

2WNT . Shannon then goes on to show that the probability that any two balls overlap can be
made arbitrarily close to zero by setting T sufficiently high.

The term M is the number of different pieces of information we can send in T time units. So the
information rate is given by

C =
log2M

T
= W log2

P +N

N
.

Implications of Shannon’s Theorem. Shannon’s Theorem is universally applicable. If we wish
to increase the capacity (information rate), Shannon’s Theorem says that we can achieve that by
either increasing the bandwidth W of the underlying channel or increasing the signal strength P .

Note that neither W nor P can be increased arbitrarily. There are limits on W due to technology
(semiconductor constraints) and regulation; furthermore, increase in bandwidth also increases the
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associated noise. In fact, under idealized conditions N increases linearly with W . In particular,
N = N0W , where N0 is referred to as the Noise Power Density; N0 = kT , where k is the Boltzmann
constant and T is the temperature of the median (in Kelvin).

The signal strength P also cannot be increased arbitrarily. There are regulatory constraints; fur-
thermore, there are potential health hazards of very high-powered signals.

3 Analog and digital data, signals, and transmissions

Simply put, the term analog refers to “continuous” functions, over time, while digital refers to
“discrete” functions over time. Examples of analog data include voice, video, and graphics, while
examples of digital data include text and stored images. Analog signals are continuously varying
signals; unguided wireless media transmit analog signals. A digital signal is a sequence of voltage
pulses; it is generally cheaper and less susceptible to noise, though suffers more attenuation than
analog signals.

We can have either analog or digital data transmitted using analog or digital signals. The process of
converting data into signals that can be carried by a given transmission medium is called modulation
and the reverse process is called demodulation. We briefly discuss the four possibilities here; these
will be elaborated in more detail in the following weeks.

Analog-to-analog. A canonical example of transmitting analog data using analog signals is the
telephone. In this case, the frequency spectrum of the underlying data (voice) matches that of the
carrier (telephone wire) – this is referred to as baseband transmission. For several other applications
(e.g., cellular telephony), one needs to modulate the analog data so that the frequency spectrum
of the resulting signal matches that of the carrier.

Digital-to-analog. When digital data are sent using analog signals, the discrete data is encoded
in terms of the carrier signals of the underlying transmission medium. Some transmission media
such as wireless only admit analog signals, so transmitting digital content through them requires
digital-to-analog conversion. Another example is digital data over telephone wires.

Analog-to-digital. When analog data are transmitted using digital signals, the data is essentially
digitized to obtain a bit stream, which is transmitted using a digital signal. Digitization may be
done even in cases where the final transmission medium admits analog signals; e.g., digitzation of
voice signals prior to transmission over wireless media, to improve quality.

Digital-to-digital. Finally, when digital data is transmitted using digital signals, a simple encod-
ing scheme can be used that essentially represents the two bit values using two different voltage
levels. There are other encoding schemes that are used when the signal needs to satisfy some other
properties (e.g., synchronization) which are not satisfied by this simple scheme.
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