Signal Encoding

CS 6710 Spring 2010 Rajmohan Rajaraman

Reasons for Choosing Encoding Techniques

- □ Digital data, digital signal
 - o Equipment less complex and expensive than digital-to-analog modulation equipment
- □ Analog data, digital signal
 - o Permits use of modern digital transmission and switching equipment

Reasons for Choosing Encoding Techniques

- □ Digital data, analog signal
 - o Some transmission media will only propagate analog signals
 - o E.g., unguided media
- □Analog data, analog signal
 - o Analog data in electrical form can be transmitted easily and cheaply
 - o Done with voice transmission over voice-grade lines

Signal Encoding Criteria

- What determines how successful a receiver will be in interpreting an incoming signal?
 - o Signal-to-noise ratio
 - o Data rate
 - o Bandwidth
- ☐ An increase in data rate increases bit error rate
- □ An increase in SNR decreases bit error rate
- □ An increase in bandwidth allows an increase in data rate

Comparing Encoding Schemes

- ☐ Signal spectrum
 - With lack of high-frequency components, less bandwidth required
 - Spectral efficiency (also called bandwidth efficiency)
 - With no dc component, ac coupling via transformer possible
 - o Transfer function of a channel is worse near band edges
- □ Clocking
 - o Ease of determining beginning and end of each bit position

Comparing Encoding Schemes

- ☐ Signal interference and noise immunity
 - o Performance in the presence of noise
 - Power efficiency
- ☐ Cost and complexity
 - o The higher the signal rate to achieve a given data rate, the greater the cost

Digital Data to Analog Signals

- □ Amplitude-shift keying (ASK)
 - o Amplitude difference of carrier frequency
- □ Frequency-shift keying (FSK)
 - o Frequency difference near carrier frequency
- □ Phase-shift keying (PSK)
 - o Phase of carrier signal shifted

Figure 6.2 Modulation of Analog Signals for Digital Data

Amplitude-Shift Keying

- □ One binary digit represented by presence of carrier, at constant amplitude
- □ Other binary digit represented by absence of carrier

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

• where the carrier signal is $A\cos(2\pi f_c t)$

Amplitude-Shift Keying

- ☐ Relatively inexpensive to implement
- ☐ Inefficient modulation technique since it is much more susceptible to noise
 - o Atmospheric and impulse noises tend to cause rapid fluctuations in amplitude
- □ Linear modulation technique
 - o Good spectral efficiency
 - o Low power efficiency
- Used for carrying digital data over optical fiber

Binary Frequency-Shift Keying (BFSK)

☐ Two binary digits represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

• where f_1 and f_2 are offset from carrier frequency f_c by equal but opposite amounts

Frequency-Shift Keying (FSK)

- ☐ Less susceptible to error than ASK
- ☐ Used for high-frequency (3 to 30 MHz) radio transmission
- □ Can be used at higher frequencies on LANs that use coaxial cable
- □ Amplitude of the carrier wave is constant o Power-efficient

- ☐ More than two frequencies are used
- More bandwidth efficient but more susceptible to error

$$S_i(t) = A\cos 2\pi f_i t$$
 $1 \le i \le M$

- $f_i = f_c + (2i 1 M)f_d$
- f_c = the carrier frequency
- f_d = the difference frequency
- M = number of different signal elements = 2 ^L
- L = number of bits per signal element

☐ To match data rate of input bit stream, each output signal element is held for:

$$T_s = LT$$
 seconds

- where T is the bit period (data rate = 1/T)
- \square So, one signal element encodes L bits

□Total bandwidth required

$$2Mf_d$$

- ☐ Minimum frequency separation required $2f_d = 1/T_s$
- ☐ Therefore, modulator requires a bandwidth of

$$W_d = 2^L/LT = M/T_s$$

Figure 6.4 MFSK Frequency Use (M = 4)

☐Two-level PSK (BPSK)

o Uses two phases to represent binary digits

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ A\cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$
$$= \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

o Linear modulation technique

- □ Differential PSK (DPSK)
 - o Phase shift with reference to previous bit
 - Binary 0 signal burst of same phase as previous signal burst
 - Binary 1 signal burst of opposite phase to previous signal burst

☐ Four-level PSK (QPSK)

o Each element represents more than one bit

$$S(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

☐ Multilevel PSK

 Using multiple phase angles with each angle having more than one amplitude, multiple signals elements can be achieved

$$D = \frac{R}{L} = \frac{R}{\log_2 M}$$

- *D* = modulation rate, baud
- R = data rate, bps
- $M = \text{number of different signal elements} = 2^{L}$
- L = number of bits per signal element

Performance

 \square Bandwidth of modulated signal (B_T)

o ASK, PSK
$$B_T = (1+r)R$$

o FSK
$$B_T = 2DF + (1+r)R$$

- R = bit rate
- 0 < r < 1; related to how signal is filtered
- DF = $f_2 f_c = f_c f_1$

Performance

 \square Bandwidth of modulated signal (B_{τ})

o MPSK
$$B_T = \left(\frac{1+r}{L}\right) R = \left(\frac{1+r}{\log_2 M}\right) R$$
 o MFSK
$$B_T = \left(\frac{(1+r)M}{\log_2 M}\right) R$$

- *L* = number of bits encoded per signal element
- *M* = number of different signal elements

Quadrature Amplitude Modulation

- □QAM is a combination of ASK and PSK
 - o Two different signals sent simultaneously on the same carrier frequency

$$s(t) = d_1(t)\cos 2\pi f_c t + d_2(t)\sin 2\pi f_c t$$

Figure 6.10 QAM Modulator

Analog Data to Analog Signal

- Modulation of digital data
 - o When only analog transmission facilities are available, digital to analog conversion required
- Modulation of analog data
 - A higher frequency may be needed for effective transmission
 - Modulation permits frequency division multiplexing

Modulation Techniques

- □ Amplitude modulation (AM)
- ■Angle modulation
 - o Frequency modulation (FM)
 - o Phase modulation (PM)

Amplitude Modulation

■Amplitude Modulation

$$s(t) = \left[1 + n_a x(t)\right] \cos 2\pi f_c t$$

- $\cos 2\pi f_c t = \text{carrier}$
- x(t) = input signal
- n_a = modulation index (< 1)
 - Ratio of amplitude of input signal to carrier
- o Double sideband transmitted carrier (DSBTC)

(a) Spectrum of modulating signal

(b) Spectrum of AM signal with carrier at f_c

Figure 6.12 Spectrum of an AM Signal

Amplitude Modulation

☐ Transmitted power

$$P_t = P_c \left(1 + \frac{n_a^2}{2} \right)$$

- P_t = total transmitted power in s(t)
- P_c = transmitted power in carrier

Single Sideband (SSB)

- ☐ Variant of AM is single sideband (SSB)
 - o Sends only one sideband
 - o Eliminates other sideband and carrier
- □ Advantages
 - o Only half the bandwidth is required
 - o Less power is required
- □ Disadvantages
 - o Poor performance in fading channels

■Angle modulation

$$s(t) = A_c \cos[2\pi f_c t + \phi(t)]$$

■Phase modulation

o Phase is proportional to modulating signal

$$\phi(t) = n_p m(t)$$

• n_p = phase modulation index

- ☐ Frequency modulation
 - o Derivative of the phase is proportional to modulating signal

$$\phi'(t) = n_f m(t)$$

• n_f = frequency modulation index

- □ Compared to AM, FM and PM result in a signal whose bandwidth:
 - o is also centered at f_c
 - o but has a magnitude that is much different
- ☐ Thus, FM and PM require greater bandwidth than AM

□ Carson's rule

$$B_T = 2(\beta + 1)B$$

where

$$\beta = \begin{cases} n_p A_m & \text{for PM} \\ \frac{\Delta F}{B} = \frac{n_f A_m}{2\pi B} & \text{for FM} \end{cases}$$

☐ The formula for FM becomes

$$B_T = 2\Delta F + 2B$$

Analog Data to Digital Signal

- □ Digitization: Often analog data are converted to digital form
- □Once analog data have been converted to digital signals, the digital data:
 - o can be transmitted using NRZ-L
 - o can be encoded as a digital signal using a code other than NRZ-L
 - o can be converted to an analog signal, using previously discussed techniques

Analog data to digital signal

- □ Pulse code modulation (PCM)
- □ Delta modulation (DM)

Pulse Code Modulation

- ☐ Based on the sampling theorem
- ☐ Each analog sample is assigned a binary code
 - o Analog samples are referred to as pulse amplitude modulation (PAM) samples
- □ The digital signal consists of block of *n* bits, where each *n*-bit number is the amplitude of a PCM pulse

Digit	Binary Equivalent	PCM waveform
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	7
6	0110	
7	0111	

Digit	Binary Equivalent	PCM waveform
8	1000	_
9	1001	4
10	1010	5
11	1011	4
12	1100	4
13	1101	_
14	1110	5
15	1111	

(b)

Figure 6.15 Pulse-Code Modulation

Pulse Code Modulation

- ■By quantizing the PAM pulse, original signal is only approximated
- ☐ Leads to quantizing noise
- □ Signal-to-noise ratio for quantizing noise

$$SNR_{dB} = 20 \log 2^n + 1.76 dB = 6.02n + 1.76 dB$$

□Thus, each additional bit increases SNR by 6 dB, or a factor of 4

Delta Modulation

- □Analog input is approximated by staircase function
 - o Moves up or down by one quantization level (δ) at each sampling interval
- ☐ The bit stream approximates derivative of analog signal (rather than amplitude)
 - o 1 is generated if function goes up
 - o 0 otherwise

Figure 6.18 Example of Delta Modulation

Delta Modulation

- □Two important parameters
 - o Size of step assigned to each binary digit (δ)
 - o Sampling rate
- □ Accuracy improved by increasing sampling rate
 - o However, this increases the data rate
- □ Advantage of DM over PCM is the simplicity of its implementation