Sensor Networks & Applications

Partly based on the book Wireless Sensor Networks by Zhao and Guibas

Constraints and Challenges

□ Limited hardware:

- o Storage
- o Processing
- o Communication
- o Energy supply (battery power)
- □ Limited support for networking:
 - o Peer-to-peer network
 - o Unreliable communication
 - o Dynamically changing
- □ Limited support for software development:
 - Real-time tasks that involve dynamic collaboration among nodes
 - o Software architecture needs to be co-designed with the information processing architecture

Sensor vs other ad hoc networks

Sensor networks

- Mobile ad hoc networks
- Special communication patterns: many-to-one, one-to-many, attributebased
- Static sensors in many applications
- Constraints more severe than general ad hoc networks
- Distributed collaborative computing

- General-purpose communication involving mobile devices
- Devices are often mobile

Applications

Environmental monitoring o Traffic, habitat, security Industrial sensing and diagnostics o Manufacturing, supply chains □ Context-aware computing o Intelligent homes □ Military applications: o Multi-target tracking □ Infrastructure protection: o Power grids

Why are Sensor Networks Special?

□ Matchbox-sized to Shoebox-sized nodes

- o Tmote: 8 MHz, 10K RAM 48K Flash, 15 kJ, 50 m
- o Sensoria sensor: 400 MHz, 32 MB, 300 kJ, 100 m
- More severe power constraints than PDAs, mobile phones, laptops
- □ Mobility may be limited, but failure rate higher
- Usually under one administrative control
- A sensor network gathers and processes specific kinds of data relevant to application
- Potentially large-scale networks comprising of thousands of tiny sensor nodes

Advantages of networked sensing

Detection:

o Improved signal-to-noise ratio by reducing average distance between source and sensor

□Energy:

o A path with many short hops has less energy consumption than a path with few long hops

□Robustness:

o Address individual sensor node or link failures

Localization techniques

- Methods that allow the nodes in a network to determine their geographic positions
- □ Use of current GPS systems not feasible:
 - o Cost
 - o Power consumption
 - o Form factor
 - o Do not work indoors or under dense foliage
- □ Sensor network approach:
 - A small number of nodes are equipped with GPS receivers and can localize themselves
 - o Other nodes localize themselves using landmarks
- □ Two ranging techniques:
 - o Received signal strength (RSS)
 - o Time of arrival (TOA/TDOA)

Received signal strength (RSS)

If the source signal strength and attenuation are known, then receiver can estimate its distance from the sender

$$P_r = G \cdot P_t \,/\, d^{\alpha}$$

- \Box Unfortunately, RSS (α) can vary substantially:
 - o Fading
 - o Multipath effects
- Apparently, localization to within meters is the best one can do with RSS in practice

Time of arrival

□ Basic idea:

- o Measure time it takes for a signal to travel from sender to receiver
- o Multiply by signal propagation speed
- Need sender and receiver to be synchronized, and exact time of transmission known
- □ Exact transmission time hard to determine
- □ Time Difference of Arrival (TDOA)
 - o Measure TDOA at two receivers
 - o Can obtain difference in distances between the two receivers and the sender
- □ Signal speed not necessarily constant
 - o Local beacons and measurements to estimate signal speed
- □ Apparently distance measurement to within centimeters achievable

Localization using ranging

- Obtain multiple distance measurements using multiple landmarks
- Write out equations, including measurement errors o Variables are the errors and the location coordinates
- Minimize the weighted total squared error to yield the desired estimate
- □ [SHS01]

Focus Problems

- □ Medium-access and power control:
 - o Power saving techniques integral to most sensor networks
 - Possibility of greater coordination among sensor nodes to manage channel access
- □ Routing protocols:
 - o Geographic routing and localization
 - o Attribute-based routing
 - o Energy-Awareness
- □ Synchronization protocols:
 - Many MAC and application level protocols rely on synchronization
- □ Query and stream processing:
 - o Sensor network as a database
 - Streams of data being generated at the nodes by their sensors
 - Need effective in-network processing and networking support

MAC Protocols for Sensor Networks

□ Contention-Based:

- o CSMA protocols (IEEE 802.15.4)
- o Random access to avoid collisions
- o IEEE 802.11 type with power saving methods

□ Scheduling-Based:

- o Assign transmission schedules (sleep/awake patterns) to each node
- o Variants of TDMA

□ Hybrid schemes

IEEE 802.15.3

□ Two versions:

- o Basic (without beacons)
- o Beacon-based
- □ Basic: CSMA-CA
- □ Beacon-based
 - o Similar to PCF of 802.11
 - o Coordinator sends out a beacon periodically
 - o Superframe between consecutive beacons
 - Active period
 - Inactive period
 - o Active period
 - Contention Access Period
 - Contention Free Period

Proposed MAC Protocols

□ PAMAS [SR98]:

- o Power-aware Medium-Access Protocol with Signaling
- o Contention-based access
- Powers off nodes that are not receiving or forwarding packets
- o Uses a separate signaling channel
- □ S-MAC [YHE02]:
 - o Contention-based access
- **TRAMA** [ROGLA03]:
 - o Schedule- and contention-based access
- □ Wave scheduling [TYD+04]:
 - o Schedule- and contention-based access

<u>S-MAC</u>

□ Identifies sources of energy waste [YHE03]:

- o Collision
- o Overhearing
- o Overhead due to control traffic
- o Idle listening
- Trade off latency and fairness for reducing energy consumption
- □ Components of S-MAC:
 - o A periodic sleep and listen pattern for each node
 - o Collision and overhearing avoidance

S-MAC: Sleep and Listen Schedules

- Each node has a sleep and listen schedule and maintains a table of schedules of neighboring nodes
- Before selecting a schedule, node listens for a period of time:
 - o If it hears a schedule broadcast, then it adopts that schedule and rebroadcasts it after a random delay
 - o Otherwise, it selects a schedule and broadcasts it
- If a node receives a different schedule after selecting its schedule, it adopts both schedules
- □ Need significant degree of synchronization

S-MAC: Collision and Overhearing Avoidance

□ Collision avoidance:

- o Within a listen phase, senders contending to send messages to same receiver use 802.11
- □ Overhearing avoidance:
 - o When a node hears an RTS or CTS packet, then it goes to sleep
 - o All neighbors of a sender and the receiver sleep until the current transmission is over

- □ Traffic-adaptive medium access protocol [ROGLA03]
- $\hfill\square$ Nodes synchronize with one another
 - o Need tight synchronization
- For each time slot, each node computes an MD5 hash, that computes its priority

$$p(u,t) = MD5(u \oplus t)$$

- □ Each node is aware of its 2-hop neighborhood
- □ With this information, each node can compute the slots it has the highest priority within its 2-hop neighborhood

TRAMA: Medium Access

Alternates between random and scheduled access
 Random access:

- o Nodes transmit by selecting a slot randomly
- o Nodes can only join during random access periods
- □ Scheduled access:
 - o Each node computes a schedule of slots (and intended receivers) in which will transmit
 - o This schedule is broadcast to neighbors
 - A free slot can be taken over by a node that needs extra slots to transmit, based on priority in that slot
 - o Each node can determine which slots it needs to stay awake for reception

Wave Scheduling

□ Motivation:

- o Trade off latency for reduced energy consumption
- o Focus on static scenarios
- □ In S-MAC and TRAMA, nodes exchange local schedules
- Instead, adopt a global schedule in which data flows along horizontal and vertical "waves"
- □ Idea:
 - o Organize the nodes according to a grid
 - Within each cell, run a leader election algorithm to periodically elect a representative (e.g., GAF [XHE01])
 - Schedule leaders' wakeup times according to positions in the grid

Wave Scheduling: A Simple Wave

Wave Scheduling: A Pipelined Wave

Wave Scheduling: Message Delivery

□ When an edge is scheduled:

- o Both sender and receiver are awake
- Sender sends messages for the duration of the awake phase
- If sender has no messages to send, it sends an NTS message (Nothing-To-Send), and both nodes revert to sleep mode

□ Given the global schedule, route selection is easy

- o Depends on optimization measure of interest
- Minimizing total energy consumption requires use of shortest paths
- Minimizing latency requires a (slightly) more complex shortest-paths calculation

Routing strategies

Geographic routing

- o Greedy routing
- o Perimeter or face routing
- o Geographic localization

□ Attribute-based routing:

- o Directed diffusion
- o Rumor routing
- o Geographic hash tables
- Energy-aware routing:
 - o Minimum-energy broadcast
 - o Energy-aware routing to a region

Geographic Location Service (GLS)

- □ Use sensor nodes as location servers
- Organize the space as a hierarchical grid according to a spatial quad-tree
- □ Each node has a unique ID (e.g., MAC address)
- □ Location servers for a node X:
 - One server per every vertex of the quad tree that is a sibling of a vertex that contains X
 - This server is the node with smallest ID larger than X in the region represented by the quad tree vertex (with wraparound, if necessary)
- □ To locate a node X:
 - o Traverse up the quad tree repeatedly seeking the node that has the smallest ID larger than X

□ [L+00]

Performance of GLS

- Depth of the quad-tree = O(log n), where n is the number of nodes in the network
- Therefore, number of location servers for a given node is O(log n)
- □ How many nodes does a given node serve?
 - o If the Ids are randomly distributed, can argue that the expected number of nodes served per node is O(log n)
 - o Even with high probability
- If the source and destination lie in a common quad-tree tile at level i
 - o At most i steps are needed to reach the location server for the destination
 - o Cost of location service distance-sensitive

Attribute-based routing

Data-centric approach:

- Not interested in routing to a particular node or a particular location
- o Nodes desiring some information need to find nodes that have that information

□ Attribute-value event record, and associated query

type	animal		
instance	horse		
location	35,57		
time	1:07:13		

type	animal		
instance	horse		
location	0,100,100,200		

Directed diffusion

□ Sinks: nodes requesting information

□ Sources: nodes generating information

□ Interests: records indicating

o A desire for certain types of information

o Frequency with which information desired

□ Key assumption:

o Persistence of interests

□ Approach:

o Learn good paths between sources and sinks

o Amortize the cost of finding the paths over period of use

□ [IGE00]

Diffusion of interests and gradients

- Interests diffuse from the sinks through the sensor network
- □ Nodes track unexpired interests
- □ Each node maintains an interest cache
- □ Each cache entry has a gradient
 - o Derived from the frequency with which a sink requests repeated data about an interest
 - o Sink can modify gradients (increase or decrease) depending on response from neighbors

Rumor routing

- Spread information from source and query from sink until they meet
- Source information and query both follow a onedimensional strategy
 - o Random walk
 - o Straight ray emanating from origin
- As agents move, both data and interest are stored at intermediate nodes
- Query answered at intersection point of these two trajectories
- □ Multiple sources and sinks:
 - o Merge interest requests and data
- 🖵 [BE02]

Geographic hash tables (GHT)

- Hash attributes to specific geographic locations in the network
 - Information records satisfying the attributes stored at nodes near location
- □ Every node is aware of the hash function
 - Query about records satisfying a given attribute are routed to the relevant location
- □ Load balancing achieved by hash function
- Information also stored locally where it is generated
- Can also provide replication through a hierarchical scheme similar to GLS

🗆 [R+03]

GHT & geographic routing

- The nodes associated with a particular attribute are the ones that form the perimeter around the hashed location
- □ One of these is selected as a home node
 - o Node closest to the location
 - o Determined by going through the cycle
 - o Recomputed periodically to allow for changes

Energy-aware routing

□ Need energy-efficient paths

□ Notions of energy-efficiency:

- o Select path with smallest energy consumption
- o Select paths so that network lifetime is maximized
 - When network gets disconnected
 - When one node dies
 - When area being sensed is not covered any more

□ Approaches:

- o Combine geographic routing with energy-awareness
- o Minimum-energy broadcast

Geography and energy-awareness

- Recall that geographic routing is divided into two steps:
 - o Planarization of the underlying transmission graph
 - o Routing on the planar graph using greedy and perimeter routing
- Can we obtain planar subgraphs that contain energy-efficient paths?
 - o Gabriel graph and similar variants do not suffice
 - o Planar subgraphs based on Delaunay triangulation have desired properties
 - Unfortunately, not necessary that greedy and perimeter routing will find such paths
- Energy available at nodes dynamically changes as different paths are used

Incorporating residual node energy

□ Cost for each edge has two components:

- o Energy consumption for transmission
- o Energy already consumed at each endpoint
- o A suitable weighted combination of both
- □ Geographic Energy-Aware Routing (GEAR)
 - If neighbors exist that are closer with respect to both distance and cost, select such a node that has smallest cost
 - o Otherwise, select a node that has smallest cost
 - o Costs updated as energy of nodes change

□ [YGE01]

Minimum Energy Broadcast Routing

- Given a set of nodes in the plane
- Goal: Broadcast from a source to all nodes
- In a single step, a node may broadcast within a range by appropriately adjusting transmit power

Minimum Energy Broadcast Routing

- □ Energy consumed by a broadcast over range r is proportional to r^{α}
- Problem: Compute the sequence of broadcast steps that consume minimum total energy
- □ Centralized solutions
- □ NP-complete [ZHE02]

Three Greedy Heuristics

- □ In each tree, power for each node proportional to α th exponent of distance to farthest child in tree
- □ Shortest Paths Tree (SPT) [WNE00]
- Minimum Spanning Tree (MST) [WNE00]
- □ Broadcasting Incremental Power (BIP) [WNE00]
 - o "Node" version of Dijkstra's SPT algorithm
 - o Maintains an arborescence rooted at source
 - In each step, add a node that can be reached with minimum increment in total cost
- □ SPT is $\Omega(n)$ -approximate, MST and BIP have approximation ratio of at most 12 [WCLF01]

Lower Bound on SPT

- □ Assume (n-1)/2 nodes per ring
- □ Total energy of SPT: $(n-1)(\varepsilon^{\alpha} + (1-\varepsilon)^{\alpha})/2$
- Optimal solution:
 - o Broadcast to all nodes
 - o Cost 1
- Approximation ratio

 $\Omega(n)$

Performance of the MST Heuristic

Weight of an edge (u,v) equals d(u,v)^α
 MST for these weights same as Euclidean MST

 o Weight is an increasing function of distance
 o Follows from correctness of Prim's algorithm

 Upper bound on total MST weight
 Lower bound on optimal broadcast tree

Weight of Euclidean MST

 What is the best upper bound on the weight of an MST of points located in a unit disk?
 o In [6,12]!

□ Dependence on α o $\alpha < 2$: in the limit ∞ o $\alpha \ge 2$: bounded

Structural Properties of MST

Upper Bound on Weight of MST

$$\Box$$
 Assume α = 2

□ For each edge *e*, its diamond accounts for an area of

 $\frac{|e|^2}{2\sqrt{3}}$

Total area accounted for is at
most
$$\pi(2/\sqrt{3})^2 = 4\pi/3$$

MST cost equals $\sum_e |e|^2$

 \Box Claim also applies for $\alpha > 2$

 $\sum_{e} \frac{\left| e \right|^2}{2\sqrt{3}} \le \frac{4\pi}{3}$ $\sum |e|^2 \le \frac{8\pi}{\sqrt{3}} \approx 14.51$

Lower Bound on Optimal

- □ For a non-leaf node \mathcal{U} , let \mathcal{F}_{u} denote the distance to farthest child
- □ Total cost is

- Replace each star by an MST of the points
- Cost of resultant graph at most $12\sum r_u^{\alpha}$

MST has cost at most 12 times optimal

Performance of the BIP Heuristic

- \Box Let V_1, V_2, \dots, V_n be the nodes added in order by BIP
- \Box Let H be the complete graph over the same nodes with the following weights:
 - o Weight of edge (v_{i-1}, v_i) equals incremental power needed to connect v_i
 - o Weight of remaining edges same as in original graph G
- \Box MST of H same as BIP tree B

$$\operatorname{Cost}_{G}(B) = \operatorname{Cost}_{H}(B)$$

 $\leq \operatorname{Cost}_{H}(T)$
 $\leq \operatorname{Cost}_{G}(T)$

Synchronization in Sensor Networks

Need for Synchronization in Sensor Networks

Localization

 Time of arrival methods require tight time synchronization between sender and receiver or among multiple receivers

Coordinated actuation

- o Multiple sensors in a local area make a measurement
- o Determining the direction of a moving car through measurements at multiple sensors
- □ At the MAC level:
 - o Power-saving duty cycling
 - o TDMA scheduling

Synchronization in Distributed Systems

Well-studied problem in distributed computing

Network Time Protocol (NTP) for Internet clock synchronization [Mil94]

Differences: For sensor networks

- o Time synchronization requirements more stringent (μ s instead of ms)
- o Power limitations constrain resources
- o May not have easy access to synchronized global clocks
- o NTP assumes that pairs of nodes are constantly connected and experience consistent communication delays
- o Often, local synchronization sufficient

Network Time Protocol (NTP)

Measures of Interest

- Stability: How well a clock can maintain its frequency
- Accuracy: How well it compares with some standard
- □ Precision: How precisely can time be indicated
- □ Relative measures:
 - o Offset (bias): Difference between times of two clocks
 - o Skew: Difference between frequencies of two clocks

Synchronization Between Two Nodes

A sends a message to B; B sends an ack back
 A calculates clock drift and synchronizes accordingly

- Δ : Measured offset
- *d* : Propagation delay

$$\begin{split} \Delta &= \frac{(T_2 - T_1) - (T_4 - T_3)}{2} \\ d &= \frac{(T_2 - T_1) + (T_4 - T_3)}{2} \end{split}$$

Sources of Synchronization Error

- □ Non-determinism of processing times
- □ Send time:
 - Time spent by the sender to construct packet; application to MAC
- Access time:
 - o Time taken for the transmitter to acquire the channel and exchange any preamble (RTS/CTS): MAC
- □ Transmission time: MAC to physical
- Propagation time: physical
- □ Reception time: Physical to MAC
- □ Receive time:
 - o Time spent by the receiver to reconstruct the packet; MAC to application

Sources of Synchronization Error

- Sender time = send time + access time + transmission time
 - o Send time variable due to software delays at the application layer
 - o Access time variable due to unpredictable contention
- Receiver time = receive time + reception time
 - Reception time variable due to software delays at the application layer
- Propagation time dependent on sender-receiver distance
 - Absolute value is negligible when compared to other sources of packet delay
 - If node locations are known, these times can be explicitly accounted

Error Analysis

$$\Delta = \frac{(T_2 - T_1) - (T_4 - T_3)}{2}$$

$$d = \frac{(T_2 - T_1) + (T_4 - T_3)}{2}$$

$$S_A : \text{ Sender time at A}$$

$$R_A : \text{ Receiver time at A}$$

$$P_{A \to B} : \text{ Prop. time for } A \to B$$

$$T_1 \quad A \quad T_4$$

$$T_1 \quad A \quad T_4$$

$$S^{UC} : S_A - S_B$$

$$R^{UC} : R_B - R_A$$

$$P^{UC} : P_{A \to B} - P_{B \to A}$$

$$Error = \frac{S^{UC} + R^{UC} + P^{UC}}{2}$$

Two Approaches to Synchronization

□ Sender-receiver:

- o Classical method, initiated by the sender
- o Sender synchronizes to the receiver
- o Used in NTP
- o Timing-sync Protocol for Sensor Networks (TPSN) [GKS03]
- □ Receiver-based:
 - o Takes advantage of broadcast facility
 - o Two receivers synchronize with each other based on the reception times of a reference broadcast
 - o Reference Broadcast Synchronization (RBS) [EGE02]

Time stamping done at the MAC layer

- o Eliminates send, access, and receive time errors
- □ Creates a hierarchical topology
- □ Level discovery:
 - Each node assigned a level through a broadcast
- □ Synchronization:
 - Level *i* node synchronizes to a neighboring level *i-1* node using the sender-receiver procedure

Reference Broadcast Synchronization

□ Motivation:

- o Receiver time errors are significantly smaller than sender time errors
- o Propagation time errors are negligible
- o The wireless sensor world allows for broadcast capabilities
- □ Main idea:
 - o A reference source broadcasts to multiple receivers (the nodes that want to synchronize with one another)
 - o Eliminates sender time and access time errors

Reference Broadcast Synchronization

- □ Simple form of RBS:
 - A source broadcasts a reference packet to all receivers
 - o Each receiver records the time when the packet is received
 - o The receivers exchange their observations
- □ General form:
 - o Several executions of the simple form
- $\hfill\square$ For each receiver , receiver i derives an estimate of Δ_{ij}

 T_i : Receive time at i

$$\Delta_{ij} = T_j - T_i$$

$$\Delta_{ij} = \frac{1}{m} \sum_{k=1}^{m} (T_{kj} - T_{ki})$$

Reference Broadcast Synchronization

□ Clock skew:

- o Averaging assumes S_{ij} equals 1
- o Find the best fit line using least squares linear regression
- o Determines S_{ij} and Δ_{ii}
- Pairwise synchronization in multihop networks:
 - o Connect two nodes if they were synchronized by same reference
 - o Can add drifts along path
 - o But which path to choose?
 - o Assign weight equal to root-mean square error in regression
 - o Select path of min-weight

$$t_j = t_i s_{ij} + \Delta_{ij}$$

Query Processing in Sensor Networks

The Sensor Network as a Database

- From the point of view of the user, the sensor network generates data of interest to the user
- □ Need to provide the abstraction of a database
 - o High-level interfaces for users to collect and process continuous data streams
- □ TinyDB [MFHH03], Cougar [YG03]
 - Users specify queries in a declarative language (SQL-like) through a small number of gateways
 - o Query flooded to the network nodes
 - Responses from nodes sent to the gateway through a routing tree, to allow in-network processing
 - o Especially targeted for aggregation queries
- □ Directed diffusion [IGE00]
 - Data-centric routing: Queries routed to specific nodes based on nature of data requested

Challenges in Sensor Network Databases

- □ A potentially highly dynamic environment
- □ Relational tables are not static
 - Append-only streams where useful reordering operations too expensive
- High cost of communication encourages in-network processing
- Limited storage implies all the data generated cannot be stored
- Sensor nodes need to determine how best to allocate its sensing tasks so as to satisfy the queries
- □ Data is noisy
 - Range queries and probabilistic or approximate queries more appropriate than exact queries

Classification of Queries

□ Long-running vs ad hoc

- o Long-running: Issued once and require periodic updates
- o Ad hoc: Require one-time response

□ Temporal:

o Historical

o Present

o Future: e.g., trigger queries

□ Nature of query operators

o Aggregation vs. general

□ Spatial vs. non-spatial

The DB View of Sensor Networks

Traditional

Procedural addressing of individual sensor nodes; user specifies how task executes; data is processed centrally.

SensId	Loc	Time	Туре	Value
1	(2,5)	3	temperature	60
1	(2,5)	6	pressure	62

User

DB Approach

Declarative querying and tasking; user isolated from "how the network works"; in-network distributed processing.

[TinyDB, Cougar]

SensId	Loc	Time	Туре	Value
2	(4,2)	3	light	55
2	(4,2)	5	pressure	30

SensId	Loc	Time	Туре	Value
3	(3,1)	3	humidity	70

Example queries

□ Snapshot queries:

o What is the concentration of chemical X in the northeast quadrant?

SELECT AVG(R.concentration)

FROM Sensordata R

WHERE R.loc in (50,50,100,100)

□ Long-running queries

Notify me over the next hour whenever the concentration of chemical X in an area is higher than my security threshold.
 SELECT R.area,AVG(R.concentration)
 FROM Sensordata R
 WHERE R.loc in rectangle
 GROUP BY R.area
 HAVING AVG(R.concentration)>T

DURATION (now,now+3600)

EVERY 10

Query processing model

- Users pose queries of varying frequencies and durations at gateway
- Queries dispatched every epoch
- Query propagation phase:
 - Queries propagated into the network
- Result propagation phase:
 - Query results propagated up to the gateway in each round of the epoch

Query propagation

- □ Construct an aggregation tree
- Propagate query information for epoch along the tree
 - o Query vectors, frequencies, durations
- The tree will be used for result propagation during the epoch
- □ What aggregation tree to construct?
- How should a node schedule its processing, listening, receiving and transmit periods?
 - Can be done on the basis of the level in the aggregation tree
- How should we adapt the aggregation tree to network changes?

Result propagation

- Given an aggregation tree and query workload, find an energy-efficient result propagation scheme
- □ In-network processing
 - o Sensor network is power(and bandwidth) constrained
 - Local computation is much cheaper than communication

