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Abstract— Conversion of unorganized point clouds to surface
reconstructions is increasingly required in the mobile robotics
perception processing pipeline, particularly with the rapid
adoption of RGB-D (color and depth) image sensors. Many
contemporary methods stem from the work in the computer
graphics community in order to handle the point clouds
generated by tabletop scanners in a batch-like manner. The
requirements for mobile robotics are different and include
support for real-time processing, incremental update, localiza-
tion, mapping, path planning, obstacle avoidance, ray-tracing,
terrain traversability assessment, grasping/manipulation and
visualization for effective human-robot interaction.

We carry out a quantitative comparison of Greedy Projection
and Marching cubes along with our voxel planes method.
The execution speed, error, compression and visualization
appearance of these are assessed. Our voxel planes approach
first computes the PCA over the points inside a voxel, combining
these PCA results across 2x2x2 voxel neighborhoods in a sliding
window. Second, the smallest eigenvector and voxel centroid
define a plane which is intersected with the voxel to reconstruct
the surface patch (3-6 sided convex polygon) within that voxel.
By nature of their construction these surface patches tessellate
to produce a surface representation of the underlying points.

In experiments on public datasets the voxel planes method
is 3 times faster than marching cubes, offers 300 times better
compression than Greedy Projection, 10 fold lower error than
marching cubes whilst allowing incremental map updates.

I. INTRODUCTION

We propose an efficient data structure and correspond-
ing mechanisms for the classification and meshification of
unorganized points cloud that are typically produced by
range sensors such as laser scanners and image based depth
sensors. By meshification we are referring to the whole
process of surface reconstruction followed by triangulation.
Our application focus is for mobile robotics and generating
3D maps that are an improvement of occupancy grids but like
occupancy grids can support incremental update and other
applications necessary for mobile robotics. We refer to this
representation as voxel planes.

These voxel planes have all the advantages of occupancy
grids which are a well tested representation for mobile
robotics but render better and contain more information
helpful to robotic applications. They are an effective lossy
compression technique suitable for containing the pertinent
information from ensembles of point cloud data typically
collected by mobile robot range sensors.

We refer to a collection of point clouds that can be
collectively co-registered to produce a map as an ensemble
of point clouds, these are then added to a data structure that
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we refer to as the map. It is this map that the robot queries
for information about the world and updates by aligning
and adding new points as they arrive from the sensors. We
formulate the mechanism for supporting incremental updates
upon this voxel planes map by ensuring that each voxel
has sufficient statistics. This means that as new points are
observed in each map cell they can be quickly incorporated
which is vital for continuous real-time operation. It also
means sliding window processing of the voxels can be
done efficiently whereby the results from each voxel in
a 2x2x2 neighborhood can be combined to produce the
result for the overall neighborhood. The sliding window
voxel neighborhood analysis along with our meshification
procedure based on plane voxel intersection improves the
visual rendering. This is not purely an aesthetic consideration
but also a practical one important for human robot interaction
and appearance based localization. It is easier for humans to
interact with robots if they can readily see a rendering of
the robots’ internal map. A voxel rendering can be difficult
to interpret whereas a voxel planes representation is much
easier to visually process for the human, Fig. 2 and Fig. 5.

The majority of current methods for representing point
clouds in some mesh-like manner do not support incremen-
tal update. As new points arrive the entire mesh has to
be recalculated. Marching cubes and voxel planes are the
only methods that have the ability to incorporate new data
points as they arrive without having to recalculate the entire
structure. However as is shown in the experiments voxel
planes has significant advantages over marching cubes in
speed, accuracy and visual appeal.

We compare our proposed approach voxel planes to sev-
eral existing state of the art methods on publicly available
3D laser scan datasets referred to as thermolab, [1] and
thermogauss, [2]. A quantitative comparison is undertaken
of Greedy Projection and Marching cubes. Execution speed,
error and compression of these are assessed.

While voxel data structures like occupancy grids, octrees,
occupancy lists [3] have proved useful they have some limi-
tations when in comes to the various needs of robotics. These
in fact differ from the needs of the graphics community
which has done the bulk of the research on generating
meshes from unorganized point clouds usually generated by
tabletop scanning systems. visualization of the resulting data
structure is important as well for robotics applications further
considerations to those of the graphics community need to
be accommodated. The representation should be amenable
to iterative closest point aligning multiple incoming point
clouds from a moving platform. The structure should allow



the search for grasp affordances and traversability analysis
for robot locomotion.

II. RELATED WORK

The graphics community has explored many meshification
approaches. However, they have primarily been motivated
to produce water tight, high quality meshes, irrespective of
the computing power. Such algorithms include the Power
Crust [4], Ball Pivoting [5], Spectral Surface Reconstruction
[6], Smooth Signed Distance [7] and the Poisson Surface
Reconstruction [8], [9].

There are classical meshification algorithms like Marching
Cubes [10], Delaunay Triangulation [11] and their extensions
like Faster Delaunay triangulation, [12], Marching triangles
[13] which follow similar guiding principles.

The benefits of a surface representation for 3D data like
point clouds or occupancy grids have been acknowledged
in the robotics community particularly in applications like
grasping, terrain traversability assessment, mapping and visu-
alization. Wang et al. [14] use full surface reconstruction by
Hoppe’s algorithm [15] of the object for grasping unknown
objects. Surface reconstruction is among the established
approaches in terrain traversability analysis. For example, De
cubber et al. [16] establish traversability by the distance of
the observed ground plane from the expected ground plane.
While Soundrapandian et al [17] use feature extraction from
image data with a crisp rule based (CRB) classifier to classify
terrain’s traversability. Vandapel et al. [18] use the principal
component analysis (PCA) of points in a neighborhood, to
determine the "point-ness", "curve-ness" and "surface-ness"
of the neighborhood. These features are fed into a classifier
for traversability analysis. With applications to mapping,
surface reconstruction has been used by Klass et al. [19].
They create 3D surfel Grid maps by estimating the “surface
normals by the eigenvector to the smallest eigenvalue of the
3D sample covariance.” Though our approach is similar, we
improve on their work taking a sliding window approach over
PCA, formulating a mixture of Gaussians update model for
the voxel neighborhood, and demonstrating how to generate
a good mesh from the voxel planes. We also perform a
quantitative comparison of numerous contemporary methods
evaluating the accuracy, execution speed and compression
factors. Stuckler and Behnke [20] extend surfel representa-
tion to multi resolution surfel representation.

III. BACKGROUND

We compare our approach with Marching Cubes, Greedy
projection and Poisson Surface Reconstruction.

A. Marching Cubes

Marching Cubes [10] is a surface reconstruction technique
that extracts an isosurface from a scalar field. Most of the
time in robotics the input data arrives as point clouds rather
than scalar fields. Various transformations can be applied
to convert point clouds to a scalar field. For example, for
faster computation one can compute the point density in each
voxel to create the required scalar field. Another way is to
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Fig. 1. Intuitive illustration of Poisson reconstruction in 2D (from [8]).

generate a distance field from the points which is slower but
generates smoother surfaces. However, both of these methods
produce a pair of surfaces with a non-zero error greater than
the size of the voxel. In order to create a single surface
from Marching Cubes, we can compute the signed distance
function from the point cloud, but this needs oriented point
clouds. For our experiments, we compute the distance field
from the points and run an implementation of Marching
Cubes provided by the Visualization Toolkit (VTK) [21] over
the resultant scalar field.

B. Greedy Projection

Marton et al. [22] implemented a fast reconstruction
method in the Point Cloud Library [23], that creates a surface
by triangulating points after projecting them onto a tangential
surface in an adaptive local neighborhood. This method
is fast and has mechanisms to ease the addition of new
points as the robot explores new spatial scenes. However,
greedy triangulation keeps all the points and edges and they
are never deleted causing it to be memory and bandwidth
inefficient for transmitting over the network.

C. Poisson Surface Reconstruction

Poisson surface reconstruction [8], [9] relies on an implicit
function approach for reconstruction. The reconstruction is
designed to work with oriented point clouds where each point
has an associated normal vector indicating local orientation.

Their main insight is that oriented points, say
−→
V , may be

viewed as samples of the gradients of the model’s indicator
function, say χM , (see Fig. 1) and the model’s surface
is an isosurface over the indicator function. On applying
the divergence operator, the problem takes the form of the
Poisson problem.

∆χM ≡ ∇ · ∇χM = ∇ · −→V (1)

The problem is then discretized over the space using octrees,
such that each sample point falls into a leaf node at depth
D of an octree, where D is a user provided parameter. The
solution of discretized poisson equation is then fed into an
octree based Marching cubes framework to generate surfaces.

Poisson reconstruction produces smooth, closed, water
tight surfaces that are excellent for reconstructing models
once we have scans covering the model from all directions.
However, in robotics we usually acquire scans of a scene that
are not closed, for example a room with doors and windows.



Poisson reconstruction draws closure surfaces around doors
and windows which is not good for visualizing scenes in
which robots usually operate.

IV. TECHNICAL DETAILS

We need to represent point clouds in a compressed format,
yet be able to create aesthetically pleasing visualizations for
human operators. In order to do this, we discretize the point
cloud as voxels, and retain only sufficient statistics of the
points within that voxel. At each voxel is stored the number
of points (1 integer), centroid of the points (3 floats) and the
3× 3 symmetric covariance matrix (6 floats).

This representation can be used to render surface elements
(surfels) in the voxels, by the eigenvector corresponding to
the smallest eigenvalue. This is considered as the normal to
the surface and planar patch can be fitted inside the voxel
for visualization. Moreover, this representation supports in-
cremental update as we receive more data points. However,
if we follow this approach many spurious surfels arise as
shown in Fig. 2.

The sliding window augmentation gives a smoother tran-
sition in plane fitting compared to the per voxel approach.
It produces a more continuous mesh which is better suited
for visualization. The case when a plane of points intersects
the corner of a voxel is illustrated in Fig. 3. When analyzed
independently the points lying within the corner of a voxel
will be poorly fit and classified as insufficiently planer.
This problem is alleviated by considering the neighborhood
around each voxel vertex via the efficient sliding window
implementation.

A. Incremental update and sliding window computation

The per voxel sufficient statistics are used for two primary
reasons, to enable the incremental addition of new co-
registered points to the data structure and for accelerating
the sliding window processing. Rather than considering a
collection of all the points in a 2x2x2 neighborhood and
performing PCA on those points, instead PCA is performed
separately on the points within each voxel and the sufficient
statistics stored. The PCA of each 2x2x2 neighborhood is
then calculated as the composition of the Gaussian distri-
butions (2) and (3) in each voxel within that neighborhood.
Because fewer points need to be considered for each PCA
operation and the PCA is not being repeated for each of the
8 sliding windows that include a particular voxel it is much
faster.

For a combination of multiple Gaussian distributions the
resulting mean X̄ and covariance covX may be calculated
as

X̄ =
∑
i

piX̄i (2)

and

covX =
∑
i

pi

(
covXi + X̄iX̄i

> − X̄X̄>
)

(3)

where pi = Ni/
∑

iNi and Ni is the number of points
associated with each normal.

B. Meshification

The underlying representation for each voxel is defined by
the number of points, the centroid and the covariance matrix.
Now we discuss conversion of this underlying representation
into a form suitable for visualization.

Graphics hardware generally expects a mesh for hardware
accelerated rendering and so conversion of unorganized
points into meshes, a process known as meshification or
triangulation, is an active research area in the computer
graphics community where they strive for high fidelity and
accurate meshes. The requirements for mobile robotics are
different and include support for real-time processing, incre-
mental update, localization, mapping, path planning, obstacle
avoidance, ray tracing and manipulation.

First voxels are classified into planar and non-planar
voxels by inspecting their eigenvalues as follows. Planar
voxels must satisfy the constraint on the eigenvalues within
their 2x2x2 neighborhood that two are large and one small.
The value of the large eigenvalue is ultimately limited by
2x2x2 window. Rather than training a classifier as in [18]
we establish a viable threshold based on the meaning of
the eigenvalue, the voxel size and the anticipated point
error. This point error is predominantly due to noise in our
range sensors and registration errors. The eigenvalues are
the variances along the corresponding eigenvectors. As such
for planar voxels across the sliding window we expect the
eigenvalues to satisfy, λ0 > λt, λ1 > λt, λ2 < λt where
λt = ε2 with epsilon the anticipated point noise and in our
case ε is 0.02m.

Once voxel neighborhoods have been classified then the
different elements can be converted to a mesh for accelerated
rendering on the GPU. For planar voxels the surrounding 8
voxels (the neighborhood) are considered and the infinite
plane is intersected with an inner voxel that surrounds the
vertex at the center of the 2x2x2 block. The plane normal
is given by the eigenvector with the smallest eigenvalue and
the point in the plane is the centroid of the points.

To generate the mesh that corresponds to this plane voxel
intersection the intersection points of the plane with each
edge of the voxel are determined. For a line defined by P1,
P2 and plane with normal, n̂ and point P0 intersection point,
U, is

U =
n̂.(P0 −P1)

n̂.(P2 −P1)
. (4)

This line plane intersection is done for each of the 12 edges
of the voxel cube and there can be 0-6 intersection points.
The intersection points then have triangles formed between
them to flesh out the surface element contained within
the voxel. This triangulation is straightforward because the
points form a planar convex polygon.

By generating the mesh in this fashion a contiguous
surface of tessellating surface elements can be constructed
when multiple voxels contain parts of a larger surface. This
looks better visually and the resulting composite mesh can
be used for ray tracing operations which are often necessary
for predicting sensor data given a particular pose.



Fig. 2. Example visualization approaches. Visualizing the voxels of an occupancy grid as cubes (Left). Drawing planes within each voxel by estimated
surface normal without using sliding window (Center). Final visualization by our method (Right).

Fig. 3. Illustration of the problem with performing PCA on each voxel
independently which is alleviated by the presented modified sliding window
approach.

C. Semi-Sparse blockwise implementation

In practice, voxel plane estimation is performed by quan-
tizing 3D sensor data at a chosen resolution and storing it in
a semi-sparse blockwise data structure.

This blockwise structure consists of a coarse resolution
(1m) dense grid that contains pointers for non-empty coarse
voxels. The pointers at each occupied coarse voxel point to
the corresponding fine resolution (0.05m) dense occupancy
grid for that coarse voxel. Fig. 4 is a 2D illustration of
this. This is similar in ethos to an octree but with only
one level of indirection is much faster to access a particular
voxel at the cost of an increase in required memory. The
memory consumption is vastly reduced compared to a dense
occupancy grid at the fine resolution. If occupied voxels
were distributed randomly throughout space the semi-sparse
approach would offer less memory savings, however due to
the inherently clustered nature of typical real 3D data the
blockwise data structure is suitable. Often not just a single
voxel is required but a group of voxels in a neighborhood
need retrieving which can be done quickly.

Fig. 4. 2D illustration of the semi-sparse blockwise data structure which
enables fast access whilst reducing memory requirements for processing
large datasets. It is a hybrid structure consist of a dense coarse (1m) grid
of pointers to fine grids (0.05m) for occupied coarse grid voxels.

D. Coloring unoriented planes by normals

To help visualize texture-less meshes the surface elements
need to be colored by their normals. To visualize the smooth-
ness of a surface it is vital for the coloring scheme to have
two characteristics. Firstly, the colors should be the same for
the planes with normal vectors that are opposite in direction
as it is impossible to determine the orientation of plane in
unoriented point clouds. Secondly, the color space should be
continuous, i.e. no sharp changes in color when two planes
are closely oriented.

The first condition can be satisfied by flipping the normals
that point on one side of a chosen plane (say X-Y plane).

n̂′ =

{
−n̂ if n̂z < 0

n̂ if n̂z ≥ 0
(5)

This flipping creates a discontinuity in the coloring of
normals if each component in the normals is mapped to
RGB components, since the domain of normals is just a
hemisphere instead of a sphere. To solve this problem, we
stretch the hemisphere to complete a sphere. This stretching



is done in spherical coordinates. Let (r, θ, φ) be the spherical
coordinates of flipped normals n̂′, then the vector in the
stretched sphere is given by spherical coordinates (r, 2θ, φ)
(where r = 1 since n̂′ is a unit vector). The coordinates of
the resultant vector can be directly mapped to RGB colors
(after appropriate scaling and shifting) for a continuous color
space over the normals.

[θ, φ] =

[
arccos

n̂′z
r
, arctan

n̂′y
n̂′x

]
(6)

[R,G,B] =
1

2
[sin 2θ cosφ+ 1, sin 2θ sinφ+ 1, cos 2θ + 1]

(7)

V. EXPERIMENTS

We compare our voxel planes algorithm with three other
surface reconstruction algorithms. The chosen algorithms are
Greedy Projection [22], Poisson Surface Reconstruction [8],
and Marching Cubes [10]. We do only qualitative comparison
with Poisson Surface Reconstruction, while we do quantita-
tive comparisons by comparing the remaining algorithms in
terms of their CPU runtime and error to representation size.
Fig. 6 shows a CPU runtime comparison as we increase the
number of points. It is clear from Fig. 6, that Marching cubes
has a much higher growth rate than Voxel Planes or Greedy
projection. It should be noted that Greedy projection is faster
than Voxel Planes but the growth rates of both algorithms are
similar. The speed of Greedy projection can be attributed to
fast triangulation of points while Voxel Planes depends upon
PCA in each voxel of points. Moreover, Greedy projection is
implemented in C++, while Voxel Planes is implemented in
Python. Fig. 7 plots a comparison in terms of error and rep-
resentation size. For Robotics requirements like transmitting
data over network, the representation with acceptable error
and minimum representation size is the best. Hence, results
towards the lower left corner of the graph are better.

The error metric in Fig. 7 is computed by cross-validation
technique. The input point cloud is divided into test and
meshification samples in the ratio 1:9. We use the meshifica-
tion sample to perform surface reconstruction by the different
algorithms and then compute average distance of test points
from the generated mesh. The representation size for Voxel
Planes is 10 floats per voxel while for Marching Cubes it is
1 float per voxel. For Greedy projection, the representation
size is given by 3 floats per point and 3 integers per triangle.
For these calculations we assume floats and integers to be
4 bytes each. Also note that we vary the representation size
of Marching Cubes and Voxel Planes by changing the voxel
size but the Greedy projection representation is changed by
sampling a smaller number of points from the dataset. For
Voxel planes, the error per points decreases with increase
in representation size but, interestingly, after a certain point
it starts to increase again. This behaviour can be explained
by too few points per voxel at a finer resolution. In a
noisy dataset, too few points per voxel cause improper plane
fitting and hence greater errors. This can be eliminated by
increasing the sliding window size for smaller voxels.

Experiments are undertaken on two datasets. The first
the thermolab dataset, [1], was recorded with a Riegl VZ-
400 Laser Scanner and consists of 8 scans captured inside
a building at Jacobs University Bremen. The second the
thermogauss dataset, [2], an outdoor large-scale urban en-
vironment. Visualization of these datasets are displayed in
Fig. 5 and Fig. 10 respectively.

It has been observed that for point clouds that come from
laser range scanners there is anisotropic sampling on planes
that are orientated obliquely to the scanner. This results in
columns of points clamped to the same horizontal angle but
due to range error they appear to be distributed in a plane
aligned with the rays from the range sensor. These point
columns give rise to spurious fit planes which are eliminated
by the sliding window approach.

VI. CONCLUSION

If one needs to agglomerate a continuous stream of range
data either from range images or range scans in an online
manner then most conventional methods for the meshification
of unorganized points are unsuitable. Marching cubes and
the voxel planes method proposed herein are two options.
Whilst the marching cubes algorithm has good performance
we show, through experiments on both indoor and outdoor
urban environments where flat surfaces are prevalent, that it
is significantly outperformed by our voxel planes method.
Improvements are observed in terms of execution speed,
scalability in the number points and compression ratio.

We have presented a procedure for converting the point
clouds from laser and depth sensors that is suitable for
robotics applications especially as it is amenable to con-
tinuous incremental updates. This novel process starts with
storing the number of points, centroid and covariance matrix
for each voxel. Then in order to calculate the eigenvalues
and vectors of the 2x2x2 voxel region the voxel statistics are
combined via a mixture of Gaussians and PCA performed
to classify and determine the best fit plane for voxels of
the neighborhood. This plane is then intersected with the
voxel encompassing the central point of the neighborhood
to generate a surface patch which meshes with those of sur-
rounding voxels to assemble a surface suitable for rendering
on contemporary graphics processing hardware. Our metrics
provide information that allows an informed choice between
the various families of unorganized point cloud meshification
and surface extraction methods.
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Fig. 5. Visualization of the four meshification methods compared: Voxel Planes (top-left), Greedy Projection (top-right), Marching Cubes (bottom-left)
and Poisson (bottom-right). The Poisson visualization has been clipped from above to visualize the interior of the scene as it produces water tight closed
surfaces.
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Fig. 6. Runtime comparison of the algorithms on the thermolab dataset
[1].
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Fig. 7. Graph showing the change in accuracy as a function of representa-
tion size for each method on thermolab dataset [1]. Lower error at a small
representation size, i.e. lower left corner in the plot, is better. To compute
error metric we perform surface reconstruction on only 90% of the points
while using the remaining points to calculate the average per point distance
to the mesh.
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Fig. 8. CPU runtime comparison of different algorithms on thermogauss
[2] dataset.
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