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Abstract— It is frequently accepted in the manipulation
literature that tactile sensing is needed to improve the precision
of robot manipulation. However, there is no consensus on how
this may be achieved. This paper applies particle filtering to
the problem of localizing the pose and shape of an object that
the robot touches. We are motivated by the situation where the
robot has enclosed its fingers around an object but has not yet
grasped it. This might be the case just prior to grasping or
when the robot is holding on to something fixtured elsewhere
in the environment. In order to solve this problem, we propose
a new model for position measurements of points on the robot
manipulator that tactile sensing indicates are touching the
object. We also propose a model for points on the manipulator
that tactile measurements indicate arenot touching the object.
Finally, we characterize the approach in simulation and useit
to localize an object that Robonaut 2 holds in its hand.

I. I NTRODUCTION

One of the fundamental barriers to autonomous robot
manipulation in unstructured environments is perception.
Estimating the combined state of the manipulator and the
objects that the robot touches has proven to be difficult.
Attempts to estimate hand-object configuration visually are
hampered by occlusions. Instead, force and tactile sensingis
a natural way to track the combined state of the manipulator
and the objects acted upon during manipulation. Although
this type of measurement is information-poor relative to
camera images, it does not suffer from occlusions and it
has the potential to enable more precise position and force
estimates than is possible using only visual information.
This paper focuses on the problem of tracking the pose and
shape of an object that a robot holds between compliant
fingers. We are motivated by the situation where the robot has
enclosed its fingers around an object but has not yet grasped
it. This might be the case just prior to grasping or when
the robot is holding on to something fixtured elsewhere in
the environment. Our objective is to localize the object more
precisely using force and position sensing in order to assist
subsequent interactions with the object. The result shouldbe
more accurate than the visual estimate alone and it should
account for displacements caused by the manipulator itself.

Particle filtering is a statistical approach to robust non-
linear state estimation that is well suited to the problem
of tracking object configuration based on a series of force
and position measurements [1], [2], [3]. In [1], the authors
applied Markov localization to the problem of localizing the
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planar pose (3 DOFs) of an inelastic fixtured part based on
tactile measurements. The likelihood of a particular position
was calculated by numerically integrating a Gaussian error
model over the contour of the object. The resulting likelihood
model was stored in a look-up table. Similarly, Petrovskaya
et. al. also localize an inelastic object by making repeated
contact with a single end-effector. In this work, localization
occurred in the space of spatial object poses (6 DOFs) [2].
The high-dimensional likelihood space caused Petrovskaya
et. al. to propose a variant of particle filter annealing that
iteratively increases measurement model entropy while de-
creasing the search space. In related work, Chhatpar and
Branicky apply particle filtering to the problem of localizing
the pose of a peg with respect to a hole [3]. In contrast to
the above, their work samples measurements from across the
state space on-line rather than creating an analytical model
for the measurement distribution.

This paper expands on the work described above by
proposing a new measurement model that can be used to
track hand-object configuration during manipulation. We are
specifically interested in the case where the pose of the robot
hand is known but the object configuration is unknown and
possibly moving in the hand. A key step in particle filtering
is the weighting phase where each particle is weighted
depending upon how likely the observed measurement would
be if the system were in the state hypothesized by that
particle. Our measurement model integrates the likelihood
of a contact position measurement over the space of all
possible true contact positions on the surface of the object.
This is different than that approach taken in [2] where the
likelihood of an observed contact is evaluated with respectto
the maximum likelihood point on the surface of the object.
This paper also proposes using negative information obtained
from contacts that are knownnot to be touching the object.
As in the above, we integrate the likelihood of the negative
contact measurement over the volume outside the object.
Also, we briefly describe a dynamic approach to particle filter
annealing that enables us to localize in five dimensions using
the particle filter. Finally, after demonstrating the advantage
of the new measurement model in simulation, we apply the
approach to a practical object localization problem where
we estimate the pose of an object that is captured by the
Robonaut 2 hand. The Robonaut 2 experiments demonstrate
that the approach is a viable solution to an important practical
problem in humanoid robotics.



II. BAYESIAN FILTERING

The goal of Bayesian filtering is to track the state of a
stochastic system as it changes. It is assumed that state,x, is
a stochastic Markov function of time. At every timestep, the
measurements,z, depend only on the current state. Starting
with a prior distribution over state,P (x0), Bayesian filter-
ing recursively updates a posterior distribution,P (xt|z1:t),
where xt is the state at timet and z1:t = {z1, . . . , zt} is
the set of measurements between time1 and time t. The
update to the posterior (also called the “belief state”) is
accomplished in two steps. First, the prediction step updates
the distribution by applying a system model:

P (xt|z1:t−1) =

∫

P (xt|xt−1)P (xt−1|z1:t−1)dxt−1 (1)

The above uses the Markov assumption that
P (xt|xt−1, z1:t−1) = P (xt|xt−1). In the second step,
the posterior distribution is updated in proportion to the
likelihood of having generated the observed measurements,
zt:

P (xt|z1:t) = ηP (zt|xt)P (xt|z1:t−1), (2)

where
η =

1

P (zt|z1:t−1)

is a normalizing constant.
Equations 1 and 2 constitute an optimal solution to the

problem of tracking state in a Markov system. However,
they ignore the question of how the posterior distribution
is represented. Two popular solutions to this problem are
the Kalman filter and the particle filter. The Kalman filter
is optimal, but makes strict (linear system, Gaussian noise)
assumptions regarding the system and measurement models.
The particle filter does not make these assumptions, but
relies on Monte Carlo methods that depend on an adequate
sampling the posterior distribution. This paper uses the
sample importance resampling (SIR) version of the particle
filter [4] to track hand-object state.

III. L IKELIHOOD OF CONTACT POSITIONS

In the context of mobile robot localization, range mea-
surements are functions of the relative configuration of the
robot in the environment. Since relative robot configuration
is generally the variable of interest, the likelihood of the
measurements can be used to infer robot configuration. How-
ever, in manipulation, contact positions arenot functions of
object configuration alone. These measurements also depend
on manipulator configuration. Rather than requiring a model
of how the manipulator and the object interact, we evaluate
the likelihood of contact positions by integrating over all
possible manipulator configurations.

A. General case

Let x describe the object configuration (i.e. shape and
pose). LetR be a set of contact positions on the robot ma-
nipulator equipped with force sensors that measure whether
a point r ∈ R is touching the object or not. Letp =
(p1 . . . pP ) ⊆ R be the portion of contacts that are touching.

Let q = (q1 . . . qQ) ∈ R − p be the contacts that are not
touching. Assume that̂p and q̂ are noisy measurements of
p and q, but that there is no uncertainty regarding mem-
bership inp and q. This corresponds to an assumption that
perfect contact force sensors determine whether a contact is
touching or not but that the position of the contacts cannot
be measured accurately. In our hardware experiments (see
Section VI), the uncertainty in the position measurements
was caused by modeling inaccuracies in the manipulator
geometry and kinematics.

Assume that the contact position measurements,p̂ and
q̂, are independent and identically distributed given object
configuration,x. Then the likelihood of the measurement
can be written as a product:

P (p̂, q̂|x) =

P
∏

i=1

P (p̂i|x)

Q
∏

j=1

P (q̂j |x). (3)

If an accurate model of the manipulator-object interaction
were available, then the likelihood of a given position mea-
surement could be evaluated in terms of its proximity to an
expected position measurement:P (p̂i|model(x, u)), where
model(x, u) denotes the expected contact position given an
object configurationx and manipulator control parameters,u.
However, since the ultimate position of manipulator contacts
on an object is a complex function of the second-order
impedances of the manipulator and object, creating such a
model can be prohibitively difficult. Instead, we propose a
simpler (but less informative) measurement model created by
integrating over all possible contact positions as a function
of object pose:

P (p̂i|x) =

∫

P (p̂i|pi)P (pi|x)dpi.

In principle, pi depends onboth x and u, and we should
integrate overu:

P (pi|x) =

∫

P (pi|u, x)P (u|x)du.

However, in the absence of a model, assume thatP (pi|x) is
uniformly distributed over all possible contact positionson
the surface of the object:

P (p̂i|x) =

∫

p∈δS(x)

P (p̂i|p)dp, (4)

whereδS(x) is the set of points on the surface of the object.
Similarly, since the contact points,q, do not touch the object,
assume that they are uniformly distributed over the set of
possible contact positions outside of the object (but within a
gross region about the object):

P (q̂i|x) =

∫

p∈S̄(x)

P (q̂i|q)dq, (5)

where S̄(x) is the finite set of points outside of but within
a gross region of the object.



B. Positive contact on a polyhedron

In general, Equations 4 and 5 have no closed form solution
and must be evaluated numerically or approximated by
a simple surface. This section explores approximations to
Equation 4 for polyhedrons. LetF be the set of faces that
comprise the polyhedron. Then Equation 4 becomes:

P (p̂i|x) =
∑

f∈F

P (p̂i|f), (6)

with
P (p̂i|f) =

∫

p∈f(x)

P (p̂i|p)dp, (7)

where f(x) is the set of positions on facef when the
object is in configurationx. Suppose the contact position
measurement noise is Gaussian:

P (p̂i|pi) = N (p̂i|pi, Σ)

= N (pi|p̂i, Σ), (8)

where N (·|µ, Σ) denotes the normal distribution aboutµ

with a covariance matrix,Σ. For each facet, define an
orthonormal basis described by the rotation matrix,Rf =
(tx, ty, n), wheren is a basis vector normal tof andtx and
ty span the plane containingf . Let

pt =

(

tTx
tTy

)

p

be the projection ofp onto the plane and let

pn = nT p

be the projection onto the normal. As a result, we can write:

P (p̂i|p) = P (p|p̂i)

= P (pt|pn, p̂i)P (pn|p̂i). (9)

P (pt|pn, p̂i) andP (pn|p̂i) can be evaluated using standard
Gaussian manipulation techniques [5]. The Gaussian distri-
bution in Equation 8 can be treated as a joint distribution
over pt andpn with a covariance matrix:

Σ =

(

Σtt Σtn

Σnt Σnn

)

.

Then
P (pn|p̂) = N (pn|p̂n, Σnn), (10)

and
P (pt|pn, p̂i) = N (pt|p̂t|n, Σt|n), (11)

where
Σt|n = Σtt − ΣtnΣ−1

nnΣnt,

and
p̂t|n = p̂t − ΣtnΣ−1

nn(pn − p̂n).

Substituting Equations 10 and 11 into Equation 7, we have:

P (p̂i|f) =

∫

(pt,pn)∈f(x)

N (pt|p̂t|n, Σt|n)N (pn|p̂n, Σnn)

= N (fn|p̂n, Σnn)

∫

pt∈ft(x)

N (pt|p̂t|n, Σt|n),(12)
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Fig. 1. The dotted line in (a) shows a hypothetical path of a contact
measurement in the neighborhood of a planar rectangle. (b) illustrates the
likelihood of the measurement along this path. The dip in thelikelihood
function occurs as the path turns the corner.

whereft(x) is the set of tangent coordinates of the points
in face f and fn = pn ∈ fn(x) is the constant position of
points in facef measured along the normal vector,n.

If the facetf is indefinite, then the integral in Equation 12
goes to one and

P (p̂i|f) = N (pn|p̂n, Σnn). (13)

If the facet,f , is bounded by a rectangle,

pt ∈ R2 : px
t ∈ [xh, xl] ∧ p

y
t ∈ [yh, yl],

andΣt|n is isotropic, then Equation 12 becomes:

P (p̂i|f) =
1

4
N (pn|p̂n, Σnn)YfXf , (14)

where

Yf =

[

erf

(

yh − p̂y√
2σy

)

− erf

(

yl − p̂y√
2σy

)]

,

and

Xf =

[

erf

(

xh − p̂x√
2σx

)

− erf

(

xl − p̂x√
2σx

)]

,

and erf denotes the error function andσx and σy are the
singular values ofΣ associated with eigenvectors directed
along the rectangle axes,tx and ty. Note that in order
to apply this technique on multiple differently oriented
rectangular faces, the requirement forΣt|n to be isotropic
essentially requiresΣ to be isotropic. Also, note thatP (p̂|f)
tends toward Equation 13 as the facet becomes larger relative
to σx andσy.

Figure 1 illustrates the behavior of the likelihood function
in the neighborhood of a planar rectangle. The dotted line
in Figure 1(a) illustrates a hypothetical path of a contact
measurement,̂p, through the space around the rectangle.
Figure 1(b) illustrates the likelihood function for the path.
The dip in Figure 1(b) occurs as the path turns the corner
and shows that the likelihood of the measurement decreases
in the neighborhood of the corner.



C. Negative contact on a polyhedron

Whereas it is possible to give a good closed-form approx-
imation of the likelihood of contacts touching a polyhedral
object, there is no similar closed form expression for the
likelihood of negative contacts (contacts that do not touch
such the object). Our analysis in Section III-B was possible
because of the constraint that the Gaussian was integrated
over rectangular surfaces. However, it is not possible to
use this method to evaluate the integral over the space
outside of the object unless the object itself is rectangular.
Rather than considering only rectangular objects, we propose
approximating the likelihood function by integrating overan
appropriate half plane.

We are interested in integrating over the half plane (in
Cartesian 3-space) outside the object that contains the largest
part of the probability mass,N (q|q̂, Σ). Consider the set of
half planes bounded by planes that contain the faces of the
polyhedron. Ifq̂ is inside the object, then the largest part of
the probability mass is contained in the half plane associated
with the closest face. If̂q is outside the object, then this is the
half plane that containŝq and is bounded by the plane furthest
from q̂. Let c(f) be the plane that contains that facef ∈ F .
Let c+(f) be the half plane associated withc(f) that does
not contain the object. Leth(q̂) = {f |q̂ ∈ c+(f)} be the set
of faces that bound half planes containingq̂. Let d(f, q̂) be
the distance from̂q to c(f). We integrateN (q|q̂, Σ) over the
half plane outside the object associated with the following
face:

f∗(q̂) =

{

arg maxf∈h(q̂) d(f, q̂) if q̂ outside object.
arg minf∈F d(f, q̂) if q̂ inside object.

(15)
Now, we expand Equation 5 by integrating over the

positive half plane for facef∗(q̂):

P (q̂|x) =

∫

(qt,qn)∈f∗(q̂)

N (qt|q̂t|n, Σt|n)N (qn|q̂n, Σnn).

Since we are integrating over the entire half plane, the
tangent integral goes to one and we have:

P (q̂i|x) =

∫ ∞

q∗

n

N (qn|q̂n, Σnn)dqn

=
1

2

[

1 − erf

(

q∗n − q̂n√
2σn

)]

, (16)

whereq∗n is the normal coordinate of facef∗(q̂) and σn is
the square root of the variance in the normal direction (again,
we have assumed an isotropic covariance matrix,Σ).

One interesting point about using negative contact infor-
mation is thatall hand surfaces are known to be outside the
object – not just those hand surfaces equipped with force
sensors that indicate they are not touching. If a large number
of appropriate negative contact surfaces are used, then in
principle, good object localization is possible just using
negative information and without using contact force sensors
at all. Essentially, these negative contacts roughly encode
the geometry of the hand or manipulator and extrapolate
the object configuration based on the available free space.

Combining positive and negative contact information is a
unified way of combining the information about where the
manipulator touches the object and the available free space.

IV. M AINTAINING PARTICLE DIVERSITY USING DYNAMIC

ANNEALING

Until this point, the proposed measurement model can
be applied equally well in the context of a particle filter,
Kalman filter, monte carlo maximum likelihood estimate, or
a different form of inference. Exactly which method should
be used depends on the exact nature of the localization
problem. For problems where object configuration is known
to be fixed, a filtering solution should be discarded in favor
of a maximum likelihood or maximum a priori estimate.
The scaling series approach in [2] performs inference in
a six dimensional space. However, since we are interested
primarily in tracking the unknown motions of an object
captured by the robot hand, our focus is on a filtering
solution.

Although the particle filter has had success in three-
dimensional tracking problems, it is not clear that it is
suitable for localization problems in five, six, or higher di-
mensions (as in the present object localization scenario).The
key problem is ensuring the particle set maintains a diversity
suitable for the level of “confidence” present in the system.
When system state is uncertain, a higher entropy particle set
is appropriate while a lower entropy sampling improves the
accuracy of a highly-confident track. Deutscheret. al. address
this problem in the context of human motion tracking (a
very high dimensional state space) by proposing an annealing
technique where the entropy of the measurement distribution
is gradually decreased over time by taking the distributionto
an increasing power [6]. While this approach assists initial
localization, it does not help if the track gets “lost” because it
is impossible to increase the expected entropy of the sample
set. While this is irrelevant to the problem of locating a
static object, it is important when the object is moving in
an unknown way in the robot hand.

We address this problem with a dynamic annealing ap-
proach that adjusts measurement model entropy as a func-
tion of the normalized likelihood of the most recent mea-
surements. Large measurement likelihoods indicate that the
particle set is distributed in a likely region of space and it
is possible to decrease measurement model entropy. Small
measurement likelihoods indicate that the particles are not
focused in likely regions of space and a higher entropy
distribution is needed in order to “find” the peaks. We control
the entropy of the distribution by varying the eigenvalues
of the measurement model covariance matrix,Σ, in Equa-
tions 16 and 14 between a minimum,σmin, and maximum,
σmax. This happens in inverse exponential proportion to
the measurement likelihood of Equation 3. Assuming an
isotropic covariance matrix,Σ, let σ2 denote the variance
of Σ. Then setσ according to:

σ = (σmax − σmin)exp

(

−P (p̂, q̂|x) − Smin

Smax − Smin

)

+ σmin,

(17)



Fig. 2. Illustration of simulation setup. Three fingers (thelines) tracked the
rotating motion of a rectangle (in the plane) by applying small simulated
inward forces.

whereSmin andSmax are convenient minimum and maxi-
mum values for the likelihood,P (p̂, q̂|x).

V. SIMULATIONS

The first experiment compared the positive contact mea-
surement model proposed in this paper to the maximum
likelihood model used in [2] and [3]. Let

p∗ = arg max
p∈δS(x)

N (p|p̂, Σ)

be the most likely point on the object surface given the po-
sition measurement,̂p. Then, under the maximum likelihood
model, the likelihood of this position measurement is:

P (p̂|x) = N (p̂|p∗, Σ).

Figure 2 illustrates the experimental setup. A three finger
manipulator touches a moving rectangle two inches wide
and one inch high. The fingers apply small inward forces
such that the contacts always touch the object but do not
impede its motion. The objective is to localize and track
the rectangle using measurements of the three fingertip
positions. The rectangle rotates between−π

7 and 2π
5 radians

about an interior point in 86 time steps while the “palm”
position remains fixed. Localization occurred over the three-
dimensional space of planar object poses. The height and
width of the rectangle were assumed to be known.

Simulation results are illustrated in Figure 3. The figure
shows localization error (measured as an L2 norm in state
space) averaged over ten trials for identical runs using the
maximum likelihood model and the proposed measurement
model. The results show that measurably better performance
is obtained by the proposed model. Beyond that, a couple of
features are apparent. First, localization convergence takes
30 or 40 time steps. This is surprising since, in principle,
a minimum of only three measurements are needed to
localize the planar rectangle. However, note that three of
the right measurements are needed. For example, when the
manipulator is in the configuration shown in Figure 2, it
is impossible to accurately localize displacement along the
long axis of the box. Therefore, complete localization only
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Fig. 3. Comparison of the maximum likelihood model (dotted line) for
positive contacts with the likelihood model proposed in this paper (solid
line). Results are averaged over ten runs for each likelihood model.

Fig. 4. Robonaut 2.

occurs after one of the contacts moves over the a corner of
the rectangle. The other reason that localization takes several
steps is that the particle filter update occurs only once at each
time step. Although it is possible to execute multiple filter
updates on each time step, notice that position measurements
are plentiful in this scenario and there is no need to conserve
this information. It is a better use of computational resources
to track using the latest data. The second feature that is
apparent in Figure 3 is that the localization error actually
begins to increase after time step 50. It turns out that this is
an artifact of measurement aliasing after timestep 50. During
this period, the rectangle was in a configuration relative to
the contacts similar to that shown in Figure 2. As a result,
it was impossible for the system to localize position error
along the long axis of the rectangle and error slowly began
to integrate. This would continue until a contact again turned
a corner of the rectangle.



Fig. 5. Robonaut 2 hand. The black dots indicate the contactsused in the
experiments.

VI. EXPERIMENTS WITH HARDWARE

Experiments were performed using Robonaut 2, shown in
Figure 4. All hardware experiments used the positive and
negative contact measurement likelihood models describedin
Sections III-B and III-C. Although our goal is to track object
pose in dynamic scenarios (for example, when the object
moves in the hand), our experiments consider the converse
problem: localizing a fixed object by moving the hand over
the object surface. This is slightly easier than the original
problem because the robot measures hand velocities relative
to the object. If the object were moving in the hand, this
information might not be available. Our experiments evaluate
the efficacy of localization when the Robonaut 2 hand makes
the same sequence of compliant moves for nine different
relative tube configurations.

A. Setup

In all hardware experiments, Robonaut 2 interacted with a
piece of rubber tubing fixtured to the ground approximately
1.5 inches in diameter. Robonaut 2 is equipped with ac-
tively compliant fingers [7] that allow the stiffness of the
finger joints to be controlled programmatically. In addition,
Robonaut 2 has torque-controlled arm joints that similarly
allow the stiffness of the palm Cartesian position to be
specified programmatically. This arm and hand compliance
enabled Robonaut 2 to compliantly move along the surface
of the tube. After wrapping its fingers around the object, the
manipulator reference configuration was adjusted according
to a fixed pattern that pulled the manipulator approximately
along the length of the tubing in a twisting motion. Because
of the manipulator compliance, the resulting motion of the
robot hand was a function of the cylinder pose and radius.

The pose and radius of the rubber tubing was estimated
using a particle filter operating in a six-dimensional state
space comprised of 5 pose DOFs (no axial orientation) and
one dimension describing radius. Pose localization occurred
in five dimensions rather than four (the pose configuration
space of an infinite cylinder is only four dimensional) for pro-
gramming convenience. Since the measurement models pro-
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Fig. 6. Localization error for position (cyan), radius (green), and orientation
(blue) as a function of time (tenths of a second). The top plotshows error;
the bottom plot shows standard deviation of the particle cloud. The results
are averaged over the nine different tube orientations shown in Table I.

posed in this paper operate on polyhedra only, the shape of
the tubing was approximated by an infinite length prismatic
hexagon for the purposes of localization. Figure 5 illustrates
the contact points used during localization. The six contact
positions on the index finger, middle finger, and thumb are
equipped with embedded force sensors that measure contact.
These positions were included in̂p when the corresponding
force sensor registered an above-threashold force and inq̂

otherwise. The contact position on the palm did not have a
force sensor and was always assumed to be out of contact.

B. Experiment

The robot interacted with the tubing in the nine different
relative configurations shown in Table I. In each localization
trial, the tube was fixtured in a different orientation and the
robot executed the same sequence of compliant motions.
The filter used a set of 1000 particles. Figure 6 shows
localization error averaged over nine trials in each of the
different relative configurations. Position measurementswere
made every0.1 seconds. The results show that particle
variance has converged after 20 iterations of the filter (two
seconds of data). Localization converges to a position and
radius error approximately one tenth of an inch. Orientation
error converges to approximately 8 degrees. Orientation
error seems large because the kinematics of the hand-tube
system are poorly configured to measure orientation. When
the robot grasps the tube, a change of 8 degrees in tube
orientation results in little movement of the contacts. (One
might imagine placing two hands on a tube to measure its
orientation more precisely.)

The underlying cause of localization error was a result
of modeling errors measuring contact location. First, rather
than calculating the exact contact location on the (complex)
surface geometry of the finger, our experiments simplified
localization by assuming contact locations at the center of



Label A B C D E F G H I
Angle 0◦ 8◦ 16◦ 8◦ 16◦ 8◦ 16◦ 8◦ 16◦

Axis NA z z z z x x x x

TABLE I

THE NINE DIFFERENT TUBE ORIENTATIONS USED IN EXPERIMENT1. THE x AND z AXES ARE AN ORTHOGONAL BASIS PERPENDICULAR TO THE

CYLINDER AXIS WHEN IT IS THE ORIENTATION IS AT ZERO.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

Time (0.1s)

D
eg

re
es

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

Time (0.1s)

D
eg

re
es

Fig. 7. Comparison of localization using only positive contact measure-
ments (dashed line) and localization using positive and negative contact
measurements (solid line). The results show orientation error averaged over
ten runs in tube orientationF . The top plot shows error; the bottom plot
shows standard deviation of the particle cloud.

the finger on the corresponding phalanges. If all finger
contact surfaces were spherical, then this assumption would
be accurate for a corresponding extruded object. However,
for the actual Robonaut 2 hand, this approximation is clearly
a source of error. More significant, however, were errors
caused by incorrect kinematic modeling or incorrect joint
calibration. Given the large number of joints in the hand and
the particularly complex kinematics of the thumb, maintain-
ing a very accurate kinematic model in the context of period
recalibration of the finger joint angle sensors proved to be
difficult.

Figure 7 compares the accuracy of localization using only
positive contact measurement and using both positive and
negative contact information. The cylinder was fixtured in
configurationF (see Table I). Performance of localization
using only positive contact information improves when neg-
ative information is incorporated.

VII. C ONCLUSIONS

This paper considers the problem of hand-object state
estimation during mechanical interactions between the robot
hand and the object. We are particularly interested in local-
izing a partly or incompletely grasped part that is moving in
an unknown way. This capability could be used to identify
or characterize objects that the robot touches. Or, it could
be used during grasping to confirm that the robot is holding
the part correctly and to provide information about how to
adjust the grasp. Or, it could enable the robot to achieve a
desired hand-object relative pose in the context of a task or
assembly. The paper makes three main contributions. First,

we provide a new model of the likelihood of contact position
measurements and demonstrate a measurable improvement in
localization accuracy. Second, we propose modeling negative
contact information to improve localization. Finally, we
demonstrate that the methods can be used to localize an
object touched by a humanoid robot hand.
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