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Abstract— An important class of mobile manipulation prob-
lems are “move-to-grasp” problems where a mobile robot must
navigate to and pick up an object. One of the distinguishing
features of this class of tasks is its coarse-to-fine structure.
Near the beginning of the task, the robot can only sense the
target object coarsely or indirectly and make gross motion
toward the object. However, after the robot has located and
approached the object, the robot must finely control its grasping
contacts using precise visual and haptic feedback. This paper
proposes that move-to-grasp problems are naturally solved by a
sequence of controllers that iteratively refines what ultimately
becomes the final solution. This paper introduces the notion
of a refining sequenceof controllers and defines it in terms
of controller goal regions and domains of attraction. Refining
sequences are shown to be more robust than other types of
controller sequences. In addition, a procedure for converting a
refining sequence into an equivalent “parallelized” controller is
proposed. Executing this parallelized controller confers all the
advantages of iteratively executing the controllers sequentially.
The approach is demonstrated in a move-to-grasp task where
Robonaut, the NASA/JSC dexterous humanoid, is mounted on a
mobile base and navigates to and picks up a geological sample
box.

I. I NTRODUCTION

A key reason why mobile humanoids are important is their
ability to survive harsh environments, and because they can
perform physically challenging tasks that require dexterity
such as habitat and outpost construction. Indeed, NASA ex-
pects robots to be essential to future manned missions to the
moon and Mars. By functioning as assistants to astronauts,
robots are expected to increase the effectiveness of human
extra-vehicular activities (EVAs). In addition, the possibility
exists that robots could set up outposts for astronauts before
they arrive as well as continuing to function after the crew
return to Earth. Humanoid robots are particularly well suited to
assist in manned missions because they are physically capable
of performing many tasks that astronauts currently perform [1].
However, it is still not clear how to control these robots so that
they are able to perform complex mobile manipulation tasks
autonomously.

In the literature, mobile manipulation is frequently equated
with solving force and/or motion control tasks with one or
more mobile manipulators. Important previous work includes
work by Changet. al. and Khatib on the augmented object

model and Williams and Khatib on the virtual linkage model
for controlling object dynamics in operational space and mod-
eling internal forces, respectively [2], [3], [4]. These models
were effectively used to program hybrid force-position control
tasks that used a mobile manipulator to erase a whiteboard,
carry a basket, and sweep off a desk. Tanet al. demonstrated
an approach to kinematic optimization and hybrid position
and force control in the context of a cart pushing task using
a mobile manipulator attached to a non-holonomic mobile
base [5]. Several researchers have proposed ways of extending
or applying behavior-based techniques to mobile manipulators.
MacKenzie and Arkin adapted a behavior-based approach to
a drum sampling task where a mobile robot needed to locate
and approach a barrel and insert a probe into its bung hole [6].
This task was accomplished by executing a sequence of behav-
iors including detectdrum, moveto goal, detectbunghole,
takesample, transfer sample, etc. Petersson and Christensen
divided the mobile manipulation problem into a mobility
portion and a manipulation portion [7]. They proposed that the
mobility part is best solved using behavior-based approaches
while the manipulation part should be solved using a hybrid
dynamical system. Pimentelet al. proposed a behavior-based
architecture that can be applied to a cooperative carrying
task [8].

Instead of addressing mobile manipulation in general, this
paper focuses on a class of problems called “move-to-grasp”
problems where a mobile humanoid robot must navigate to
and pick up a target object. The general notion of “controller
funneling” applies to this class of tasks [9]. In controller
funneling, the robot executes a sequence of controllers such
that the goal configuration of one controller must be contained
inside the domain of attraction of the next. Effectively, these
controllers “funnel” the state of the robot toward a goal
configuration. A major advantage of this approach is that it
is unnecessary to design a single, monolithic controller that
converges to the task goal and yet has a large enough domain
of attraction. Burridge, Rizzi, and Koditschek demonstrated
that controller funneling can be an effective approach to
dynamic robot juggling tasks [9]. Controller funneling has
also been used in grasp synthesis where two grasp controllers
execute sequentially to generate an enveloping grasp [10].



Huber and Grupen showed that it is possible to autonomously
learn a sequence of controllers that funnels the state of a robot
system toward specific goal configurations [11].

This paper focuses on a special case of controller funneling
calledcontroller refinement. A refining sequence of controllers
must satisfy the conditions for controller funneling: the goal
region of every controller must be inside the domain of
attraction of the next controller in the sequence. In addition,
controller refinement requires the goal region of each con-
troller in the sequence to be contained within the goal region
of all previous controllers. Solutions with this structure are
particularly robust because the robot configuration never leaves
the domain of attraction of all previously executed controllers.
If a particular controller does cause the robot configuration
to leave the goal region of a previous controller, then it can
be halted and the robot can be returned to the previous goal
region by executing the previous controller. Furthermore, a
simple procedure exists for “parallelizing” refining sequences.
Instead of executing controllers in sequence, the same outcome
can be achieved by a single composite controller that executes
all controllers in parallel. For the “parallelized” controller, the
precedence relationship among controllers that was implicit in
the temporal order of the sequence is enforced by projecting
controllers later in the temporal sequence into the null space
of controllers earlier in the sequence.

This approach is characterized as part of a field study
involving Robonaut, the NASA space humanoid, and SCOUT,
a semi-autonomous rover that can transport two astronauts. In
the part of the field study reported on in this paper, astronauts
have placed a geological sample box on SCOUT. Robonaut,
mounted on a mobile SegwayTMRobotic Mobile Platform
(RMP) base, navigates to a region around SCOUT, approaches
the sample box, and grasps and lifts the box. In Section II,
refining sequences of controllers are defined and characterized.
Next, Section III-A proposes navigation and hybrid position-
force controllers that can be used to solve the move-to-grasp
task. Finally, Section III-B experimentally characterizes the
approach in the context of the Robonaut-SCOUT field test.
Results are presented that show that, for the move-to-grasp
task, executing controllers in a refining sequence leads to
monotonically decreasing variance in position error relative to
the object while localization accuracy correspondingly goes
up. In addition, trajectories produced by the refining sequence
are compared to trajectories generated by the corresponding
parallelized controller.

II. CONTROLLER SEQUENCING

A. Controller Funneling

Refining sequences of controllers are a special case of fun-
neling sequences. In controller funneling, pairs of controllers
that execute sequentially must satisfy thepreparescondition.
Φi is said toprepareΦi+1 when the goal region ofΦi is inside
the domain ofΦi+1,

g(Φi) ⊆ D(Φi+1). (1)

This condition is illustrated in Figure 1(a). The horizontal
axis represents the robot configuration space and the vertical
axis represents time. The two funnels represent controllers
that lead the robot configuration to goal regions at the funnel
“spouts.” Φi and Φi+1 are a funneling sequence because
they satisfy Equation 1,i.e. the goal region ofΦi is inside
the domain of attraction ofΦi+1. This condition guarantees
that each controller in the sequence delivers the robot to a
configuration within the domain of attraction of the controller
that executes next. As long as all controllers are stable, a
funneling sequence is guaranteed to maintain control of the
robot [9], [11]. Another important characteristic of a funneling
sequence of controllers is that it allows the system designer
to use different types of feedback at different stages in the
task. Each controller in the sequence can use a completely
different type of feedback. For example, in the case of move-
to-grasp problems, visual and haptic information is used at
different stages in the task. While it is possible to design a
single, monolithic controller that uses the different feedback
at the appropriate times, it is simpler to design two separate
controllers that execute separately. One way to build a discrete
control system that executes only funneling sequences of
controllers is to calculate the acyclic graph over controllers
defined by theprepares relation. This graph describes all
sequences of controllers that satisfy the constraint. Breadth-
first-search may be used to search this graph for a sequence
of controllers that leads to the goal configuration.

The preparescondition can also be enforced in the context
of a state-based discrete control process. This approach re-
quires discrete states to be defined over the robot configuration
space. By executing controllers, the system can transition
between states. A policy that associates each state with an
action can be used to specify the behavior of the discrete
control system. A common framework for representing the
choices that a discrete control system has available is the
Markov Decision Process (MDP). Because the MDP specifies
a stochastic transition function, this framework can be used to
characterize the stochastic dynamics of the discrete system.
When a discrete control problem is framed as an MDP,
standard planning and machine learning techniques such as
dynamic programming and Reinforcement Learning (RL) can
be used to autonomously learn a control policy [11], [12].
When an MDP representation is used, safety constraints such
as thepreparescondition can be enforced simply by pruning
actions from the MDP as a function of state [11], [12]. When
all “unsafe” actions are eliminated from the MDP, trial-and-
error learning algorithms such as RL can be used to explore
the space safely.

B. Controller Refinement

In addition to satisfying Equation 1 (the prepares condition),
a refining sequencerequires the goal region of each controller
to be a subset of the goal regions of all previous controllers.
This composite condition is,

g(Φi+1) ⊆ g(Φi) ⊆ D(Φi+1), (2)
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Fig. 1. Controller funneling, (a), compared with controller refinement, (b).

and is illustrated in Figure 1(b). This figure illustrates a
refining sequence because the “spout” ofΦi+1 is inside the
“spout” of Φi. Compared with funneling sequences, refining
control sequences are important because they can provide
an additional measure of robustness by monitoring the robot
configuration and executing a previous controller if the cur-
rently executing controller fails or becomes unstable. Assume
that the discrete control system continuously monitors which
controller convergence predicates are satisfied -i.e. for all Φi,
whether the robot configuration is insideg(Φi). Suppose that
controller Φi+1 is executing within the goal region ofΦi. If
Φi+1 causes the configuration to depart fromg(Φi), then a
discrete control system can haltΦi+1 and executeΦi until the
robot configuration again returns tog(Φi). Provided that this
discrete control system is able to monitor system configuration,
the above approach allows the discrete control system to make
its own stability guarantees even in the presence of potentially
unstable controllers. The condition expressed in Equation 2
makes this technique possible. Theg(Φi+1) ⊆ g(Φi) part of
Equation 2 gives the discrete system a way to evaluate whether
to terminateΦi+1. The prepares component of the condition,
g(Φi) ⊆ D(Φi+1), ensures that the system is able to recover
by executingΦi.

An interesting characteristic of refining control sequences
is that the robustness of the discrete control system described
above can be replicated by a single “parallelized” controller
that executes all of the controllers in the refining sequence
concurrently. Assume that each controller,Φi, in a refining
sequence descends the gradient of its associated artificial
potential function,∇Φi. The parallelized controller projects
the output of controllers late in the sequence into the null
space of the output of “earlier” controllers. In particular, given
a refining sequence,R = (Φ1, Φ2, . . . , Φk), that executesΦ1

first, Φ2 second,etc., the corresponding parallelized controller
executes the following,

Φk,k−1,...1 = Φk / Φk−1 / . . . Φ1, (3)

where / is the subject-tooperator. The subject-to notation
derives from thecontrol basis framework and denotes that
the controller directly to the left of/ executes in the null
space of all controllers to its right [13], [14]. Assume that the
gradient of all controllers,Φ1 . . . Φk−1, is taken in the same
output space. The null space of these gradients is orthogonal

complement of the span ofΦ1 . . . Φk−1. The matrix

N
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is a square matrix that projects arbitrary vectors in the output
space into the null space ofΦ1 . . . Φk−1. Then the output of
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(4)
This sum projects the gradient of lower priority controllers into
the null space of higher priority controllers. After projecting
lower priority controller gradients into the null space, this
composite controller executes the resulting sum. Note that if
a controller is already converged, then its gradient is zero
and it does not contribute to the null space calculation. In
particular, if ∇Φ1 = 0, then N (

(∇Φ1 . . .∇Φk−1)T
)

=
N (

(∇Φ2 . . .∇Φk−1)T
)

andN (∇ΦT
1

)
= I.

Because the output of controllers late in the refining se-
quence are projected into the null space of the output of
“earlier” controllers, the “later” controllers are constrained not
to ascend the artificial potential function of earlier controllers.
Essentially, this prevents later controllers from interfering with
the objectives of the earlier controllers. This process of paral-
lelization converts the temporal nature of the refining sequence
into a prioritization of concurrently executing controllers. Note
that the net effect of the parallelized controller is the same
as that of the hybrid discrete-continuous controller described
earlier. The discrete control system essentially constrains each
controller in the sequence to execute within the goal region
of all previous controllers. If the robot configuration leaves
this region, then the current controller is halted and a pre-
vious controller executes so as to return the system to the
goal region. Similarly, the parallelized version requires each
controller to execute in the null space of all higher priority
controllers. Suppose that the robot configuration is within the
goal region of the controllersΦi−1 throughΦ1. Then the null
space projection matrix applied to the output of controllerΦi

is identity and does not effect its output. However, ifΦi should
push the system outside of this goal region, then the nullspace



applied toΦi restrictsΦi to the manifold of configurations
tangent toΦi−1 and allowsΦi−1 to return the system back
into g(Φi−1).

III. E XPERIMENTS

Controller refinement was explored in the context of a
move-to-grasp task conducted as part of the Robonaut-SCOUT
field study. This section first describes the set of controllers
that were used to solve this task. These include a navigation
control policy that moved Robonaut’s mobile base into range
of the box and hybrid force-position controllers that moved
Robonaut’s hands into a grasp configuration. Next, experi-
ments are described that execute sequential and parallelized
versions of a refining sequence. Results are presented that
characterize the trajectories taken by the robot in these two
scenarios. As controllers in the refining sequence execute,
the robot is shown to be confined to iteratively smaller and
smaller regions of configuration space. Simultaneously, box
localization error is shown to become smaller and smaller as
the sequence proceeds.

A. Controllers

The move-to-grasp task was solved by using a navigation
control policy and a set of hybrid force-position controllers.
The navigation control policy executed a pre-defined trajectory
that moved Robonaut directly in front of the box. The sequence
of hybrid force-position controllers made contact with box by
flattening Robonaut’s two palms against the sides of the box.

1) Turn-Drive-Turn Control Policy:After reaching a region
around the target object, Robonaut needed to navigate to a goal
pose directly in front of the object. A simple turn-drive-turn
control policy was used that ignored the presence of obstacles.
Given a goal pose, this control policy turned in the direction
of the goal, moved in an approximate straight line toward the
goal, and after reaching the goal position, turned into the goal
orientation. Note that this approach can only be used with
robots capable of point-turns.

The “turn-drive-turn” strategy is a policy implemented over
the state variables,

r =‖ xref − x ‖, (5)

β = atan

(
yref − y

xref − x

)
,

α = θref − θ,

where (x, θ) is the current RMP pose,(xref , θref ) is a
reference pose,x = (x, y)T , andxref = (xref , yref )T . The
state variables are as follows:r is the distance between the
current position and the reference position,β is the heading
of the object from Robonaut, andα is the difference between
the Robonaut orientation and the object orientation.

Turn-drive-turn is the control policy illustrated in Table I. It
is defined over three discrete states and executes one of two PD
controllers as a function of state:Φrot(θref ) andΦfor(dref ).
Φrot(θref ) rotates Robonaut to a reference orientation,θref .
Φlin(dref ) moves the robot forward by a distance,dref . If
Robonaut is in state 1 (it is more thanR distance from

State Condition Action
1 r ≥ R andβ ≥ B Φrot(β)
2 r ≥ R andβ < B Φlin(r)
3 r < R andα ≥ A Φrot(α)

TABLE I

TURN-DRIVE-TURN CONTROL POLICY.
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Fig. 2. States used by the approach control policy.

the object and is not pointing toward the reference position),
then turn-drive-turn executes a turn toward the reference using
Φrot(β). If Robonaut is in state 2 (it is pointing toward the
reference, but more thanR away), then it drives to to the
reference position usingΦfor(r). Finally, when Robonaut is
in state 3 (it is in the reference position, but not the reference
orientation), it executes a final turn,Φrot(α), toward the
reference orientation.

2) The Approach Control Policy:Instead of executing a
single turn-drive-turn controller that moves directly to the
target object from a point 2.5m away, the approach control
policy, Φapproach, is implemented that traverses this distance
in three distinct turn-drive-turns. A policy is defined over a
discrete state space that essentially navigates the robot through
a sequence of pose via-points. The discrete state space is a
partition of the space of real-valued robot-object poses. The
fixed policy associates each discrete state with an action that
is implemented by a control process.

This implementation uses a fixed policy defined over the
three position-based states identified in Figure 2. The x- and
y-axes represent positions in centimeters. The cross near the
lower right corner represents the position and orientation of
the target object. The solid circle and the arc represent the
boundaries between the three states. The dotted lines represent
a sample trajectory taken by the RMP base and Robonaut’s
two hands using this implementation. State 1 corresponds to
the set of positions at least 1.8m from the target object. State
2 corresponds to the set of positions less than 1.8m, but not
directly in front of the object. State 3 corresponds to a small
radius around the set of poses (position and orientation) 1.5m
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Fig. 3. The dashed line represents the goal region of the reach controller,
Φreach.

directly in front of the object. When Robonaut is more than
1.8m away from the target object (state 1), then it drives
directly toward the object to a point 1.5m away. This should
cause a transition to states 2 or 3. If Robonaut is in state 2,
then it drives to a point 1.5m directly in front of the object,
causing a transition to state 3. Finally, when Robonaut is in
state 3, it it drives to a point directly in front of the object.

3) Hybrid Force-Position Controllers:This paper takes a
control-based approach to grasping whereby grasps are syn-
thesized by executing closed-loop controllers that use position
and force feedback. The grasping task is decomposed into a
set of three hybrid force-position control objectives. The first
objective is to move Robonaut’s hands into a neighborhood of
the desired contact positions based on the visually determined
box pose. Next, a guarded move is executed that puts both
palms in contact with the sides of the box. Finally, a moment
controller executes that complies the two palms flat against
the sides of the box.

The first controller,Φreach, moves Robonaut’s two hands
onto a line perpendicular to the sides of the box that intersects
the box center as illustrated in Figure 3. This controller moves
control points located near the middle of Robonaut’s palms
onto this line.

The second controller,Φgm, executes a guarded move that
places both palms in contact with the object. The guarded
move is implemented by two constituent controllers that exe-
cute concurrently using the subject-to operator of Section II-B.
The first constituent controller,Φf , is a force controller that
applies with Robonaut’s palms reference forces directly inward
towards the box. This constituent controller is concurrently
combined withΦreach to yield

Φgm = Φf / Φreach. (6)

In this expression,Φreach constrains the palms to move along
the dashed line in Figure 3. In the null space of this objective,
Φf applies the reference force.

The third controller,Φcomply, complies the palm flat against
the sides of the sample box. This controller executes a moment
controller concurrently with the force controller and the reach
controller described above. The moment controller,Φm, op-
erates with respect to control points located in the middle of
Robonaut’s palms.Φm moves the hands so as to minimize
the net moment about these control points. The resulting
composite controller is

Φcomply = Φm / Φf / Φreach. (7)
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Fig. 4. An example of the trajectory taken by Robonaut’s two palms as they
grasp the sample box. After starting at configuration “A,” the two palms reach
toward the object toward configuration “B.” Next, the robot executes guarded
move and a compliance controllers that move the palms to configurations “C”
and “D,” respectively.

As before,Φreach constrains the palms to move along the lines
illustrated in Figure 3.Φf presses the palms against the sides
of the box. Finally,Φm rotates the palm so as to minimize
moments about the control point - essentially rotating the palm
so that all surfaces come into contact.Φf literally “pushes”
the palms flat against the sides of the box.

Figure 4 shows an example of the trajectory taken by
Robonaut’s two palms when it executesΦreach, Φgm, and
Φcomply in sequence. The lines in the figure illustrate Robo-
naut’s two palms from an overhead perspective as paddles.
Each hand is represented by a line drawn between the heel
of the palm and the fingertips. The example starts when
the palms are located at the two positions labeled (A) in
Figure 4. ExecutingΦreach moves the palms onto the line
approximately perpendicular to the sides of the box (positions
(B) in the figure.) Note that due to visual localization error,
the line is not exactly perpendicular. Next, Robonaut executes
a guarded move,Φf / Φreach, toward the box. This moves
the palms to the positions labeled (C) in Figure 4. At this
point in the example, the heels of the two palms are touching
the sides of the box. Next, executing the comply controller,
Φm / Φf / Φreach, moves the palms to positions (D) in the
figure. Now, each palm is pressed flat against the box.

B. Experimental Setup and Results

Experiments were conducted that characterize sequential
and parallelized versions of a refining sequence of controllers.

1) Sequential Execution of a Refining Sequence:In the
first experiment, a series of eight trials were conducted where
Robonaut navigated to and picked up a geological sample box
measuring7in × 8in × 11in. Robonaut started each trial in a
different location and orientation approximately 2.25m away
from the box and executed the refining sequence illustrated
in Table II. Starting no more than 2.5m away from the
sample box, this sequence executes the approach controller,
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Fig. 5. Illustration of Robonaut completing the move-to-grasp task in the Robonaut-SCOUT field study.

State Condition Controller
1 Φapproach approach object
2 Φreach reach toward object
3 Φgm guarded move
4 Φcomply comply to object

TABLE II

THE REFINING CONTROL POLICY USED IN THEROBONAUT-SCOUTFIELD

STUDY.
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Fig. 6. The trajectories taken by Robonaut during the eight experimental
trials. The “lightning-bolt” trajectories on the left side are the trajectories
taken by the mobile base. The “L”-shaped trajectories on the right are the
paths taken by Robonaut’s two palms.

Φapproach, that moves the RMP to within a radius of 0.6m
of the box (within reaching distance.) Next, it executes the
reach controller,Φreach, that moves the two hands around
the box. Next, a guarded move executes that makes contact
with the sides of the box. After making contact, the refining
sequence executesΦcomply to comply to the sides of the
box. The experimental scenario is illustrated in Figure 5.
In Figure 5(a), Robonaut is 2.25m away from the box. In
Figure 5(b), Robonaut has navigated to a point just in front of
the box. In Figure 5(c), Robonaut is lifting the box.
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Fig. 7. Standard deviation in the estimated box position decreases as the
refining control policy of Table II executes. The first bar, “approach region”
gives standard deviation when Robonaut is approximately 2.25m away from
the sample box. The second bar shows standard deviation after approaching
the sample box. The third bar shows standard deviation after making contact
and complying to the sides of the box.

Figure 6 illustrates the trajectories followed by the robot
during these eight trials. In this figure, the sample box is at
the origin with its major axis oriented horizontally. The lines
on the left side of the plot illustrate the path of the center of the
Robonaut RMP base. The two clusters of “L”-shaped lines on
the right illustrate the paths of the left and right palms. The
“lightning bolt” shape of the RMP trajectories is the result
of the approach control policy,Φapproach. Since Robonaut is
more than 1.5m away from the sample box,Φapproach moves
directly toward the box. When it gets to a point within 1.5m,
a transition to state 2 occurs and Robonaut moves to a point
along the axis of the box. When Robonaut reaches a point
1.5m directly in front of the box, the system transitions to state
3 in the approach control policy and drives toward the box.
After arriving in front of the box, the approach control policy
terminates and the refining sequence of Table II takes over
again and reaches the two palms toward the box. Following the
reach, the palms make contact with the sides of box, comply
with the box, and pick it up.
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Fig. 8. The trajectory taken by Robonaut’s two palms when executing the sequential control sequence, (a), compared with the parallelized control sequence,
(b).

The eight trajectories shown in Figure 6 illustrate how
Robonaut is confined to a smaller and smaller region of con-
figuration space as it approaches the goal. Robonaut starts the
experiment in a large range of positions, approximately 2.25m
away from the object. However, the variance in Robonaut’s
position decreases significantly when it reaches a position
directly in front of the sample box. Finally, after Robonaut
makes contact and complies with the box, this variance virtu-
ally disappears.

Robonaut’s progression through the refining sequence of
controllers is mirrored by a continual decrease in the variance
of the estimated pose of the sample box. This is illustrated
in Figure 7. When Robonaut is 2.25m away from the box,
the variance in the visually estimated position is large (the
“approach region” bar in Figure 7). However, after approach-
ing the box, Robonaut is able to localize the box much more
precisely (the “approach object” bar). Finally, after contacting
and complying with the object, Robonaut augments its visual
sense with tactile information that estimate the object pose
very precisely (“comply” bar).

2) Comparison to the Parallelized Controller:The second
experiment explored a parallelized version of the refining
sequence. This parallelized version omitted the approach con-
troller, Φapproach, and just executed the hybrid force-position
controllers,Φreach, Φgm, and Φcomply. Instead of executing
Φreach, Φgm, and Φcomply sequentially as in Table II, the
corresponding parallelized controller can be written following
Equation 3,

Φparallelized = Φcomply / Φgm / Φreach (8)

= (Φm / Φf / Φreach) (9)

/(Φf / Φreach) / Φreach

= Φm / Φf / Φreach (10)

/Φf / Φreach / Φreach

= Φm / Φf / Φreach (11)

In this equation,Φcomply / Φgm / Φreach is reduced toΦm /
Φf /Φreach by substituting into Equation 8 using Equations 6
and 7. In Equation 10, the parentheses have been removed
using an associativity property. Finally, in Equation 11, re-
dundant controllers have been removed from the expression
(only the right-most constituent controller is kept).

The results of executing this parallelized controller was
compared to the results of executing the controllers sequen-
tially. Figure 8(b) shows the results of executing the paral-
lelized controller nine times toward the visually-located box.
The s-shaped lines on the left and the right represent the
trajectories of the left and right palms as they move toward
the box in the middle. For comparison, Figure 8(a) repeats
the palm trajectories shown in Figure 6 - those generated by
executingΦcomply, Φgm, and Φreach sequentially, as shown
in Figure 6. In addition to yielding a smoother and more
natural motion, in this case, the parallelized controller executes
faster than the sequential motion becauseΦgm is able to make
progress toward its goal without violating the constraints of
Φreach (i.e. without moving the palms away from the line of
reach objectives.) Note that, instead of using the null space
projection, the advantages of concurrent executions could also
be realized simply by adding the outputs ofΦcomply, Φgm,
andΦreach. However, this approach would not guarantee that
Φreach would ever succeed. Note that in Figure 8(b), the palms
are displaced a short distance approximately tangent to the
box surface after making contact. This displacement is caused
by theΦreach objectives continuing to be asserted even after
making contact. The reach controller forces the contacts to
slide a small distance along the box surface to their final
positions.

3) Discussion: One advantage of funneling control se-
quences (whether they are refining or not) is that they provide
an easy way to utilize different kinds of information at
different stages in a task. This is highlighted in Figure 7. The



decrease in variance shown in the figure during execution of
the refining sequence suggests that information sufficiently ac-
curate to solve this task in a single step is simply not available
at the beginning of the task. Before executingΦapproach, the
sample box cannot be localized accurately enough to grasp it.
This only becomes possible when 1) visual accuracy improves
as Robonaut approaches the box, and 2) Robonaut is able to
touch the box, thereby augmenting visual information with
tactile information. Funneling sequences of controllers can
take advantage of improvements in information accuracy as
the task progresses because controllers that execute at different
stages in the sequence can use different kinds of information.
This was advantageous in the Robonaut-SCOUT field test
implementation because, in the later stages of the task, tactile
information could be used to move the contacts into a precise
grasping configuration.

Compared to arbitrary funneling controller sequences, re-
fining sequences are particularly interesting because of the
additional robustness that can be provided by a discrete control
system. Although recovery from controller failure was not
necessary in this paper’s experiments, a refining sequence
makes it possible for a discrete control system to halt a
controller that fails and return the system to a neighborhood
around the goal configuration by executing again a previously
executed controller. When the controllers used to solve a task
satisfy the refinement condition in Equation 2, the execution
of controllers can be parallelized so as to achieve task goals
faster while maintaining the robustness advantages of serial
execution. This is illustrated in Figure 8(a) and (b) where
Robonaut’s hands follow a more direct path toward the object
when executing the parallelized controller. Nevertheless, if a
constituent controller executing in parallel with other con-
trollers becomes unstable, the system will be constrained to
the null space of higher-priority constituent controllers.

The advantages of a refining sequence of controllers come
at the expense of potential difficulties implicit in designing
controllers that can be sequenced so as to satisfy Equation 2.
Rather than designing a set of controllers with goal regions
that satisfy the requirements of the refining sequence, it can
be easier to design a sequence of funneling controllers that
leads the robot through a series of via points on a path
toward the goal. The design of these controllers can be easier
because their domain of attraction does not need to cover
all configurations where the sequence will ultimately lead
the robot. If the approximate configuration of the robot at
the start of a particular controller’s execution is known, then
the controller’s domain of attraction need only cover that
configuration. This simplification comes at the expense of the
robustness described earlier.

IV. SUMMARY

This paper has addressed a class of mobile manipulation
problems called “move-to-grasp” problems, where a mobile
manipulator must navigate to and pick up an object. It is
proposed that move-to-grasp problems are best solved by
a refining sequenceof controllers, where each controller in

the sequence iteratively confines the robot to a smaller and
smaller region of configuration space. Refining sequences are
particularly robust because the robot is always within the
domain of attraction of all previously executed controllers in
the sequence. In addition, a procedure is given for converting
a refining sequence of controllers into a single “parallelized”
controller that realizes the same results as the sequence
by executing all controllers simultaneously. This parallelized
controller executes faster than the serialized version by pro-
jecting subordinate controllers into the null space of primary
controllers. This approach is explored in a move-to-grasp task
where Robonaut navigates to and picks up a geological sample
box off of a platform in the rear of SCOUT. Results are given
that show that over a series of trials, Robonaut’s configuration
is confined to an iteratively smaller region around the sample
box. This narrowing in configuration space is mirrored by im-
provements in the precision of Robonaut’s estimated position
of the box.
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