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Abstract—Localizing and manipulating features such as but-
tons, snaps, or grommets embedded in fabrics and other flexible
materials is a difficult robotics problem. Approaches that rely
too much on sensing and localization that occurs before touching
the material are likely to fail because the flexible material can
move when the robot actually makes contact. This paper ex-
perimentally explores the possibility of using proprioceptive and
load-based tactile information to localize features embedded in
flexible materials during robot manipulation. In our experiments,
Robonaut 2, a robot with human-like hands and arms, uses
particle filtering to localize features based on proprioceptive
and tactile measurements. Our main contribution is to propose
a method of interacting with flexible materials that reduces
the state space of the interaction by forcing the material to
comply in repeatable ways. Measurements are matched to a
“haptic map”, created during a training phase, that describes
expected measurements as a low-dimensional function of state.
We evaluate localization performance when using proprioceptive
information alone and when tactile data is also available. The
two types of measurements are shown to contain complementary
information. We find that the tactile measurement model is
critical to localization performance and propose a series of models
that offer increasingly better accuracy. Finally, the paper explores
this localization approach in the context of two flexible materials
insertion tasks that are relevant to manufacturing applications.

I. I NTRODUCTION

Flexible materials manipulation is an important class of
problems. Many “general assembly” tasks in automobile facto-
ries that are currently performed by humans involve installing
cables, carpets, and flexible plastics. Similarly, manufacturing
clothing, shoes, and other soft goods is labor-intensive because
robots are unable to manipulate flexible materials reliably.
Aside from its practical value, studying flexible materials
manipulation is interesting for its own reasons because many
existing approaches cannot easily be applied to the problem. It
is admittedly possible to manipulate flexible material without
estimating the state of the interaction once manipulation has
begun (for example, see the towel folding work in [1]).
However, if there is no mechanism for tracking state during
manipulation, then there is no possibility of reacting to un-
foreseen events. Given that the system is already interacting
with the object, it is natural to attempt to use a sense of touch
to track state.

This paper applies ideas used in mobile robot localization to
manipulation. There is a strong analogy: whereas the goal of
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Fig. 1. Robonaut 2 hand localizing a bump in a piece of flexible plastic.

mobile robot localization is to track the position of the robot
in the environment, the goal of manipulation localization is
to track the position of the object held in the hand. Also, the
kind of information available from range sensors or landmark
bearing estimates is of a similar complexity to that which
is available from touch sensors. Our basic approach is to
interact with a known object during a controlled training phase
whereby a map is created that describes how the material
“feels.” Then, during localization, the touch measurements are
matched to the map using Bayesian filtering. Many approaches
to flexible materials state estimation utilize high-dimensional
models of the space of possible material deformations (for
example [2], [3]). Instead, a key insight of this paper is that it
is frequently possible to manipulate a flexible material in such
a way that it always deforms in a certain way. As a result,
it is possible to reduce the dimensionality of the model by
assuming that this deformation always takes place. Our work
applies this idea to the problem of localizing “haptic features”
such as buttons, grommets, or snaps in flexible materials
through touch.

The details of this approach are explored experimentally
using Robonaut 2 [4] for three features embedded in flexible
materials: a bump in flexible plastic, a snap in fabric, and
a grommet in fabric (see Figure 4). Two types of touch
information are considered: proprioceptive measurements(the
configuration of a compliant hand during manipulation) and
tactile measurements using load-based sensors. We experimen-
tally characterize the localization accuracy using propriocep-
tive information alone and demonstrate that an improvementis
possible by also incorporating tactile information. We evaluate
the dimensionality in the tactile data that contains information
relevant to localization and show that the information con-



tained in the tactile data is qualitatively different from that in
the proprioceptive data. Finally, we demonstrate an additional
improvement in performance that results from modeling the
tactile data as a mixture of Gaussians. Bringing the pieces
together, we are able to demonstrate an expected localization
accuracy of less than0.2 inches using a combination of
proprioceptive information and load-based tactile information.
The practical advantages of the approach are illustrated inthe
context of two insertion tasks (see Figures 13 and 14). This
paper is an expanded and more complete review of this work
relative to [5].

A. Related Work

This paper is one of the first to consider the problem of
tactile state estimation while manipulating a flexible material.
Nevertheless, there is a large body of relevant prior work.
The problem of localizing inflexible objects using tactile
information has received considerable attention from a number
of different intellectual directions. An early approach considers
the problem of localizing an object with unknown object
shape parameters by fitting contact position and surface normal
measurements to a model [6], [7]. Noting that object shape is
known in many practical situations, Jia and Erdmann propose
an application of observability theory that estimates the contact
position and pose of a known object when single point contact
is made [8]. Okamura and Cutkosky take a geometric approach
to localizing surface features on inflexible objects using haptic
exploration [9].

Recently, there has been an effort to apply Bayesian filtering
to the problem of localizing inelastic objects through touch
interactions. Chhatpar and Branicky apply particle filtering to
the problem of localizing the pose of a peg with respect to a
hole [10]. Rather than using an analytical measurement model,
they create a model during a training phase where the robot
slides the peg over the hole in a series of “sweeps” [11], [12].
This approach to interacting with a material (especially the
notion of “sweeping” over a material) is related to the fabric
interaction procedure described in this paper (Section II-B).
In [13], Petrovskayaet. al. localize an inelastic object by
making repeated contact with a single end-effector. In this
work, localization occurred in the space of spatial object poses
(6 DOFs) using a particle filter and a maximum likelihood
measurement model. Gadeyne and Bruyninckx take a similar
approach where Markov localization is applied to the problem
of localizing the planar pose (3 DOFs) of an inelastic fixtured
part based on tactile measurements [14]. In this work, the
measurement model incorporated a numerical integration step.
Corcoran and Platt found an analytic solution to the above
integration for polyhedral objects and use it to realize spatial
object localization using contact position information [15].

Much flexible material manipulation literature focuses on
knot tying, and surgical suturing in particular. Remdeet al.
perform a comprehensive analysis of the contact states and fea-
sible transitions that can occur for a deformable linear object
(a rope or cable) [16]. As pointed out in [17], it is not strictly
necessary to model the material compliance in order to plan
knots [18], [19]. However, planning techniques that take the

Fig. 2. Robonaut 2 hand. Note the three tactile sensor caps oneach finger
(one cap on each phalange).

flexible dynamics into account have more broad applications.
One way of incorporating better material models into the plan-
ning process is to calculate low-energy states for the material
given end-point configurations and plan accordingly [2], [20],
[21]. Wakamatsu and Hirai consider the more general problem
of manipulation planning for arbitrary flexible objects [22].
However, this work assumes linear strain dynamics. Tian and
Jia propose a non-parametric extension of the above linear
model [17]. Their work also considers the grasping problem
where the ramifications of object deformation on grasp point
selection is explicitly considered.

Another related body of work is concerned with flexible
materials modeling. This is important in computer graphicsas
well as robotics applications. A standard approach models the
deformable object using a set of small masses that interact
with each other through springs or other potential function
elements [23], [24], [3], [25]. For example, Burionet al. find
mass-spring parameters that generate model deformations that
best fit a series of mechanical tests performed on the object
using a particle filter [3]. Morris and Salisbury find parameters
for a potential function-based model that are damped and
generate object geometries closest to what is observed [25].

II. SYSTEM AND SETUP

This section introduces the finger tactile sensors and finger
torque control and then describes the interaction scenario.

A. Tactile sensors and finger torque control

The tactile sensors used in this work are composed of
strain gauges mounted in the load path between the contact
surfaces of the Robonaut 2 (R2) finger and the finger structure
through which contact loads are reacted to the ground [26].
Figure 2 shows the basic structure of the hand. Notice that
each finger has three “contact caps” on it – one cap on
each phalange. Each of these caps is mounted to a spring
element instrumented with strain gauges. Strain gauges are
small patches of silicone or metal that measure mechanical
strain and are affixed to surfaces on the load path. When a



(a) Bump in flexible plastic (b) Snap in cloth (c) Grommet in cloth

Fig. 4. The three features embedded in flexible materials used in the experiments.

Fig. 3. Internals of the tactile load cell used in the experiments.

load is applied to an elastic material (aluminum or steel, for
example), the load causes elastic deformations in the material
that can be measured using strain gauges. The principle of
operation is that when the R2 hand touches something (for
example, refer to Figure 1), it is these caps that actually make
contact with the environment. When this occurs, the sensors
in the spring element measure the load. Figure 3 illustratesthe
spring element itself. Notice that it has a roughly cylindrical
shape that facilitates mounting on the human-sized R2 finger.
The spring element is grounded to the robot finger at the edges
of the cylinder and attached to the contact shell by a center
plate with two screw holes. Each tactile sensor produces a
total of eight signals. No two different loads applied to the
sensor produce the same measurements. In order to minimize
the effects of uncontrolled variables such as temperature or
mechanical shifts in the sensor itself, the vector of signals
produced by a single sensor is normalized on every timestep.

Since the R2 hand is extrinsically actuated (it is driven by
motors located in the forearm), it is necessary to actuate the
tendons in order to realize joint torques.

whereẋ is the vector of tendon velocities,θ̇ is the internal
tendon velocity,q is the vector a finger joint positions,q̇ is the
vector of joint velocities, andP is full rank and non-diagonal
in general.

Following [27], our control law calculates a desired tendon
position,xd, that decouples joint velocities:

xd = x− kdẋ+ PTKp(τd − Pf),

wherex describes tendon positions,ẋ describes tendon ve-
locities, f describes tendon tensions,P describes the linear
relationship between tendon velocities and joint velocities, and
Kp and kd are the PD parameters of the torque controller.
This control law moves the tendons so as to maintain the
desired torque,τd. If a joint stiffness is desired rather than
a contact torque, the desired torque is a function of joint

position:τd = K(qd − q). Finger joint positions are measured
using hall sensors on the output of each joint. The arm joint
positions are measured using accurate optical absolute position
sensors. All the joint position sensors are calibrated relatively
accurately. Hand position estimates relative to the base frame
are accurate to within0.25 inches. Fingertip position estimates
relative to the palm are accurate to within hundredths of an
inch.

B. Interaction scenario

One key idea of this work is to interact with the flexible
material such that it deforms in repeatable ways. As a result,
it is unnecessary to model all possible deformations of the
material. We only need to model the particular interaction
scenario illustrated in Figures 1 and 5(a). In this scenario,
the flexible material loosely hangs from a test rig such that
it swings freely with respect to the robot in different direc-
tions. The robot grasps the material between its thumb and
forefingers (index and middle fingers). The forefingers apply
a constant light squeezing force against the thumb which is
held fixed. Then, the robot pulls its hand away from the fixed
point in the direction of the arrow illustrated in Figure 5(a).
We will refer to a single pull as a “swipe.” Each swipe
covers a distance of typically two or three inches at a speed
of approximately1.3 inches per second. During each swipe,
the thumb is commanded to hold a constant position with
large stiffnesses in its four joints. In the index and middle
fingers, the adduction/abduction and the medial/distal joints
are commanded to hold fixed positions with large stiffnesses.
The proximal finger joints apply a constant closing torque
such that each finger pushes with approximately0.75 Newtons
against the thumb in the direction of closing (see Figure 5(a)).

As the hand pulls, the material is squeezed between the
thumb and fingers so that it complies with the hand in
a particular and repeatable way. As the fingers move over
the material, proprioceptive and tactile sensor measurements
respond to the mechanical stiffness characteristics of the
material. Haptic features such as buttons or grommets have
mechanical properties different from that of the surrounding
material. As a result, we expect to be able to localize these
features based on sensor measurements. The evaluations in
this paper are performed for the three features illustratedin
Figure 4. The bump in Figure 4(a) is used to fixture the flexible
plastic in the context of a factory assembly task. The snap in
Figure 4(b) and the grommet in Figure 4(c) are embedded in



(a) Interaction scenario
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(b) Sample points (c) Proprioceptive data (d) Tactile data

Fig. 5. Illustration of the training phase. (a) illustratesthe robot hand performing a “swipe” from left to right. (b) shows the state locations of the roughly25000
state-measurement sample pairs collected during training over a 2.25× 2.25 inch patch on the surface of the material. (c) illustrates a single proprioceptive
signal (distance between the middle fingertip and the thumb, color variation: 0.01 to 0.97 inches) over the state space. (d)illustrates a single tactile sensor
signal (from the middle fingertip force sensor, color variation: -0.457 to +0.351 volts) over the state space.

a simulated thermal blanket that is an important part of many
extra-vehicle NASA tasks.

III. L OCALIZATION

When the robot interacts with a haptic feature such as
a button or grommet, it “feels” a characteristic signal that
enables it to localize the feature. We consider two types of
sensor information:proprioceptiveinformation that measures
finger displacements and force sensor information that directly
senses the magnitude and direction of loads applied to the
finger.

A. Training Phase

During training, a haptic “map” is created that associates
each point in state space with a measurement. Since the
material is squeezed between the thumb and forefingers,
we know already that it is touching the thumb and that it
is locally tangent to the finger and thumb surfaces at the
point of contact. The remaining dimensions of uncertainty
describe where contact occurs on the surface of the material.
We parametrize the surface of the material by a local two-
dimensional coordinate frame. State is defined to be the
location of the thumb tip in this coordinate frame. During
training, a corpus of data is collected that pairs state with
proprioceptive and force sensor measurements in the context
of the swipe interaction described earlier. In order to obtain
accurate measurements of state, the material is held in a
jig so that it is roughly immobile with respect to the base
frame. Then, data is collected by systematically performing
a series of swipes so that the entire region of interest has
been “scanned.” In this paper, each “scan” consists of23
swipes. A series of scans are performed during training. Then,
while the material remains immobilized in the jig, one or more
additional “test” scans are performed. The fact that the material
location is exactly the same during training and testing enables
us to evaluate localization accuracy by comparing localization
estimates with the known position of the hand and the material
during the test scans.

Figures 5(b), 5(c), and 5(d) illustrate data collected dur-
ing a training session. The data corpus represented consists
of approximately25000 state-measurement pairs sampled in
the locations indicated in Figure 5(b) over approximately a
2.25×2.25 inch patch in the neighborhood of the plastic bump.
The data was collected by performing 6 “scans” of the entire
region. Each of the 23 swipes in a scan are approximately0.1
inches apart. Each swipe consists of approximately 182 data
points collected approximately0.011 inches apart. In principle,
one would expect this procedure to generate samples in a
series of parallel lines0.1 inches apart. However, stiction,
Coriolis, and inertial effects in the robot arm joints as well
as forces generated by interaction with the material cause
the variation evident in Figure 5(b). Figures 5(c) and 5(d)
illustrate an example of a proprioceptive signal and a force
sensor signal sampled from a nearest neighbor function on a
regularly spaced grid defined over the2.25× 2.25 inch patch
where each grid cell is a0.02×0.02 inch square. Each point in
the grid takes the measurement value of the nearest sample in
the corpus. Figure 5(c) shows the distance between the thumb
and middle finger. The measurement values range between
0.01 inches (blue) and0.97 inches (red). Figure 5(d) shows
the response of one of the tactile sensor signals in the middle
finger. Although the physical quantity being measured is strain,
we only report the voltage response of the sensor because the
sensor is uncalibrated. Voltage is related to strain through an
unknown (but constant) linear parameter. The measurement
values range between−0.457 volts (blue) and0.351 volts
(red). As one might expect, the two types of measurements
are aligned. The same forces that cause the thumb and middle
finger to separate as they travel over the bump are also
recorded by the force sensor. Notice that the proprioceptive
data (Figure 5(c)) has the largest response when the middle
finger is on top of the bump while the tactile data (Figure 5(d))
has the greatest response on the edges of the bump.

Figures 5(c) and (d) are characterized by variations in
measurements that form horizontal lines. Comparison with
Figure 5(b) indicates that these lines are associated with the
geometry of the scan process during training. If two swipes
that are performed nearby to each other at different times



have slightly different measurement responses, then this is
manifested by a line. There are two main sources for this
variation: sensor error and shifts in the flexible material during
training. Sensor error has two effects. First, sensor errorin
the finger tension sensors causes the finger torque controller
to produce slightly different torques, thereby squeezing the
material slightly more or less tightly and causing variation
in the fingertip load cell measurements. Second, error in
the fingertip sensors themselves directly contributes to the
variation. This paper models both of the above sources of
sensor error as independent and identically distributed (iid)
Gaussian noise.

The other main source of variation in the training data is
shifts in the position of the flexible material during training.
Our training procedure is to fixture the material such that the
position of the thumb in the base frame is roughly proportional
to state (the position of the thumb in the coordinate frame
of the material). If the material is perfectly fixtured with
respect to the jig (which is itself fixtured with respect to the
ground), then the system should make the same measurements
in the same state on average. However, we have observed
some degree of uncontrolled shifting in the material during
training. These shifts appear to be stochastic in some regions of
state space and relatively deterministic in others. For example,
when a finger swipes near the edge of a feature, it will
stochastically either remain on top of the feature or it willslide
off (this effect can be observed on the top edge of the bump in
Figure 5(c) where there are a few relatively pronounced lines).
Whether the finger slides off or not is stochastic. However, this
particular effect only occurs on the edges of the features – in
the middle of a bump or in a featureless region of state space,
state measurements are likely to be less noisy. This paper
handles the possibility of state estimation errors in the training
set by modeling the likelihood of a measurement in terms
of a neighborhood of states in the training set surrounding
the query state. In Section III-C and III-D, we model this
likelihood with a Gaussian fit to the measurements from
the training set neighborhood. In Section IV, we model the
likelihood as a mixture of Gaussians fit to measurements from
the neighborhood.

B. Bayesian filtering

One way to localize the unobserved state of the flexible
material in the grasp is to use Bayesian filtering. Bayesian
filtering is especially appropriate for flexible materials state
estimation because it handles noisy observations and process
dynamics well. The goal of Bayesian filtering is to track the
unobserved state of a stochastic system as it changes. It is
assumed that state,x, is Markov. At every time step, the
measurements,z, depend only on the current state. Starting
with a prior distribution over state,P (x0), Bayesian filtering
recursively updates a posterior distribution,P (xt|z2:t, u1:t−1),
wherext is the state at timet and z2:t = {z2, . . . , zt} is the
set of measurements between time2 and timet. The update
to the posterior (also called the “belief state”) is accomplished
in two steps. First, the prediction step updates the distribution

by applying a system model:

P (xt|z2:t−1, u1:t−1)

=

∫
P (xt|xt−1, ut−1)P (xt−1|z2:t−1, u1:t−2)dxt−1. (1)

In the second step, the posterior distribution is updated in
proportion to the likelihood of having generated the observed
measurements,zt:

P (xt|z2:t, u1:t−1) =
P (zt|xt)P (xt|z2:t−1, u1:t−1)

P (zt|z2:t−1)
. (2)

Equations 1 and 2 constitute an optimal solution to the
problem of tracking state in a Markov system. However,
they ignore the question of how the posterior distribution
is represented. Two popular solutions to this problem are
the Kalman filter and the particle filter. The Kalman filter
is optimal, but makes strict (linear system, Gaussian noise)
assumptions regarding the system and measurement models.
Another alternative, the particle filter, does not make these
restrictive assumptions. However, it can fail when the particle
sample set does not estimate the posterior distribution with
sufficient accuracy.

The observation dynamics in the flexible materials domain
of this paper that are modeled during the training phase
are highly non-linear. (We assume observation noise to be
Gaussian but the observation model itself to be non-linear.)
As a result, the Kalman filter (or extended Kalman filter)
is inappropriate. The experiments in this paper were all
performed using the standard sample importance resampling
(SIR) version of the particle filter [28] using a75-particle
sample set. At each time step in the SIR particle filter, the
process update (Equation 1) is implemented by sampling from
the posterior distribution over states conditioned on action. We
assume a Gaussian motion model:

P (xt+1|ut) = N(x; f(xt, ut), Q), (3)

wherext+1 = f(xt, ut) denotes the nominal process dynamics
and Q is the covariance of the process noise (Q is set to
Q = diag(0.0004) in all experiments presented in this paper).
The measurement update (Equation 2) is implemented by
weighting each of the particles proportional to the measure-
ment likelihood. In order to prevent the sample set from
collapsing at one of the modes of the posterior distribution,
13 percent of the particles are chosen uniformly randomly at
each time step.

C. Proprioceptive measurements

Bayesian filtering can be used to perform localization using
proprioceptive information alone. We encode proprioceptive
information in terms of the pairwise distances between the
three fingers. Recall that during interaction with the material,
only the proximal flexion joints in the index and middle fingers
are under torque control. The rest of the joints in the hand
are commanded to hold fixed positions with a high stiffness.
As a result, there are no more than two dimensions of finger
position variation. These two dimensions are represented to
the system in terms of the three pairwise distances. Although



(a) Index/middle distance (b) Index/thumb distance (c) Middle/thumb distance
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Fig. 6. Relative finger positions as a function of palm position. Color denotes the magnitude of each pairwise distance with red indicating a large distance
and dark blue indicating a small distance. (a) shows the distance between the tips of the index and middle fingers (color variation: 0.01 – 0.97 inches); (b)
shows the same for the index finger and thumb (color variation: 0.04 – 0.93 inches); (c) shows the same for the middle finger and thumb (color variation:
0.09 – 0.96 inches). (d) illustrates average localization performance using only pairwise distance measurements.

this is a redundant representation, the extra data helps average
out the sensor and state estimation error in the training set
described in Section III-A.

During the measurement update, the particle filter weights
each particle by the likelihood of the measurements. The
likelihood of a proprioceptive measurement,zd, given that
the system is in statex is modeled by a locally-weighted
Gaussian distribution defined with respect to thek states
nearest (Euclidean distance)x,

P (zd|x) = N (zd; ẑd(x),Σd(x)) ,

whereN (x;µ,Σ) denotes the Gaussian pdf overx with mean,
µ, and covariance,Σ. The mean is

ẑd(x) =
1

k

∑
xi∈Nk(x)

zd(xi), (4)

wherezd(x) denotes the distance measurement associated with
statex in the training set, andNk(x) = {x1, . . . , xk} denotes
the set ofk states nearest (Euclidean distance) tox. The
covariance is

Σd(x) =
1

k

∑
xi∈Nk(x)

(zd(xi)− ẑd) (zd(xi)− ẑd)
T
. (5)

Notice that we are not fitting a measurement function with
constant measurement noise. At a query point, our model
estimates both the mean and covariance parameters of the
Gaussian based on a local neighborhood of data points in
the training set. This model incorporates state uncertainty in
the training set. In regions of state space where the average
gradient of the measurement function with respect to state is
large, Equation 5 calculates a large covariance. In contrast,
the locally weighted sample covariance in a region where
all neighboring states have the same expected measurement
should be similar to the underlying measurement noise. Notice
that this approach lumps together measurement covariance
caused by material slippage during training with measurement
covariance variation intrinsic to the flexible material itself.

Figure 6(a) through (c) shows the neighborhood means for
the three pairwise distances as a function of state for the plastic
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Fig. 7. Comparison of average localization performance for the three flexible
materials shown in Figure 4 when only proprioceptive information is used.
Average performance for the flexible bump is the blue solid line, for the snap
is the green dashed line, and for the grommet is the black dottedline. Results
are aligned with feature location.

bump training set. As in Figure 5(c) and (d), each of these
images is sampled over a grid covering a2.25 × 2.25 inch
area with each grid cell0.02 inches on a side. The color
denotes the magnitude of the pairwise distance averaged over
a local neighborhood of30 nearest neighbors (Equation 4).
Figure 6(a) through (c) can be understood intuitively. Either
the index finger or the middle finger travel over the bump.
When a finger crosses the bump, the bump pushes it away from
the thumb. At rest, the middle finger is raised slightly above
the index finger. When the middle finger crosses the bump, it
moves away from both the index finger and the thumb. When
the index finger crosses the bump, it moves away from the
thumb and towards the middle finger.

The localization performance of this model using the three
pairwise distance measurements for a plastic bump dataset
is illustrated in Figure 6(d). This experiment was performed
using a test scan collected just following collection of the
training scans. Recall that the material was fixtured in the same
jig and in the same way during both training and testing. Since
material position can be assumed to be constant in both the
training and testing data, measurements of hand position dur-



ing testing correspond give us a “ground-truth” measurement
of hand-material position relative to the training data. Inthe
experiments, we compare state (the location of the hand rela-
tive to the material) estimated using proprioceptive information
with the ground-truth measurement of state calculated based
on hand position measurements. Figure 6(d) shows localization
error averaged over 20 test swipes in an additional test scan
of the material. As in training, the test swipes comprising the
scan are approximately0.1 inches apart over approximately a
2.25 square inch area. Approximately182 measurements are
made during each swipe with each measurement an average
of 0.011 inches away from its neighbors. A single swipe takes
approximately two seconds. The particle filter is updated once
per measurement. Error is equal to the L2 distance between
weighted average particle location (the mean of the sampled
distribution) and the ground truth state. Figure 6(d) showsa
fast initial drop in localization error that is caused by the
system immediately realizing that it isnot on top of the
bump. After this, localization error begins to fall again between
−12.5 and−13. This is exactly the point where the thumb-
index distance begins to change significantly in Figure 6(b).
Localization error reaches its minimum between−13.5 and
−14 inches. Since the three pairwise distances also reach
their maxima in this region, we know that error is minimized
when one finger is completely on top of the bump. Average
localization error briefly reaches a minimum near0.25 inches.
However, since this low error estimate does not persist, it may
be difficult to assure that the particle filter converges witha
low error estimate.

Figure 7 shows a comparison with average localization
performance for the snap (dashed green line) and the grommet
(dotted black line). Training data was collected for these two
other features similarly to how the plastic bump data was
collected as described in Section III-A. The data are aligned
with the center of the feature at zero. Localization error for
all three features becomes smallest just before reaching the
center of the feature. This suggests that the most relevant
measurements are made as the fingers are just beginning to
move over the feature. Notice that as the fingers move past
the center of the feature, localization error for the bump and
snap gets worse while error on the snap remains roughly
constant. This suggests that the proprioceptive measurements
made after reaching the feature center are less informativefor
the bump and grommet but continue to be informative for
the snap. When the measurements are not informative, notice
that our Gaussian noise assumption (Equation 3) causes a
gradual increase in the entropy of the distribution, leading to an
increase in the expected error. But why are the measurements
less informative for the bump and the grommet but not for
the snap? Since the grommet is relatively narrow compared
with the snap and bump, the fingers quickly leave the surface
of the grommet and measurement informativeness drops. For
the bump, once the fingers are on top of it, the proprioceptive
measurements are equally consistent with any other location
on top of the bump. Therefore, there is some flexibility for
motion error to integrate once the fingers reach the top of the
bump. In contrast to the grommet and the bump, the snap is
both large and haptically informative over its entire extent.
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Fig. 9. Comparison of average localization performance usingproprioceptive
measurements alone (the dotted blue line) and average localization perfor-
mance when both proprioceptive and tactile measurements are used (the black
line).

Measurements continue to be informative for the entire time
while the fingers are touching the snap.

D. Tactile measurements

The fact that it is possible to achieve localization accuracy
of approximately0.25 inches briefly using only proprioceptive
information suggests that it should be possible to do very well
if tactile data is incorporated as well. The fingertip tactile
sensors provide more descriptive information – although our
load-based sensors are still limited because they only provide
force and torque information rather than direct information
regarding the contours or texture of the surface. As was the
case for the proprioceptive measurements, the tactile measure-
ments are also subject to sensor noise that will be assumed to
be Gaussian. In addition, the tactile data measurement model
must also take into account the state estimate noise caused
by shifts in the flexible material. As a result, we model the
tactile data as a single Gaussian defined over locally-weighted
sample moments:

P (zt|x) = N (zt; ẑt(x),Σt(x)) .

The mean is,

ẑt(x) =
1

k

∑
xi∈Nk(x)

zt(xi), (6)

wherezt(x) is a function that evaluates to the vector of tactile
signals for statex in the training set andNk(x) is the set of
k = 30 nearest states. The covariance over the local region is:

Σt(x) =
1

k

∑
xi∈Nk(x)

(zt(x)− ẑt(x)) (zt(x)− ẑt(x))
T
. (7)

Assuming that the proprioceptive and tactile data are condi-
tionally independent given state, the joint likelihood is the
product:

P (z|x) = P (zd|x)P (zt|x). (8)

The tactile data can be visualized using a singular value
decomposition. We perform the analysis for a grid with0.02



(a) First eigenvector (b) Second eigenvector (c) Third eigenvector (d) Fourth eigenvector

Fig. 8. First four eigenvectors of the tactile data.

square inch cells over a2.25×2.25 square inch patch (the same
patch illustrated in Figures 5 and 6). Letx = (x1, . . . , xn)

T

be the vector ofn = 24802 cells. Let ẑit(x) be ith element
of ẑt(x). Let ẑit(x) = (ẑit(x1), . . . , ẑ

i
t(xn))

T . Form measure-
ments, the dimensionality of the information contained in the
smoothed measurements is the rank of:

Γ = (ẑ1t (x), . . . , ẑ
m
t (x)).

For the flexible bump training data, the middle fingertip sensor
produced seven dimensions of tactile data. The singular values
of Γ for this 7 × 24802 matrix are1.9361, 1.2055, 1.0716,
0.7418, 0.2446, 0.1883, and0.0664. The first four eigenvectors
are illustrated in Figure 8. A couple of points bear mentioning.
First, in contrast to the proprioceptive information (Figure 6(a)
through (c)), most of the sensor response occurs on the edges
of the bump. Furthermore, the first four eigenvectors respond
differently to different parts of the edge of the bump. Using
only the first four eigenvectors, it should be possible to do a
good job localizing where along the edge of the bump contact
with the finger occurs. The plot shows localization error

Figure 9 compares the performance of Bayesian localization
using a combination of proprioceptive and tactile data (the
solid line) with the performance using just the proprioceptive
data (the blue dotted line – same as in Figure 6(d)). The
particle filter parameters as well as the flexible plastic bump
training and test data sets are the same as those used in
Section III-C. Error (L2 norm) is measured with respect to
the relative hand-material state during testing (recall that the
material continued to be fixtured in exactly the same way dur-
ing training and testing). As before, these results are averaged
over 20 test swipes comprising an additional test scan. The first
thing to notice about Figure 9 is that incorporating the tactile
data definitely improves localization accuracy – especially
between−13 and−13.5 inches. This is consistent with what
may be observed by comparing Figures 6 and 8: the tactile
data has a larger response earlier than the proprioceptive data.
When only proprioceptive information is used, the fingertips
must actually be displaced by the feature before localization is
possible. The tactile information allows localization to occur
while the forces that cause the fingertip displacements are
acting. The other notable feature of Figure 9 is that localization
performance is actually worse between−13.95 and −14.25
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Fig. 10. Measurements associated with the30 nearest states for a trajectory
through state space.

inches. This is counter-intuitive because in the Bayes optimal
setting, additional data should only improve the estimate.This
suggests that below−13.95 inches, the tactile data likelihood
model is inaccurate and causes localization errors. The next
section shows that a more accurate tactile measurement model
can reduce the impact of this effect.

IV. GAUSSIAN MIXTURE MEASUREMENT MODEL

Until this point, we have modeled state uncertainty in the
training set by fitting a single Gaussian to the measurements
associated with a neighborhood of training set states aboutthe
query point. However, Figure 10 illustrates that this uncertainty
is not always Gaussian. Figure 10 shows measurements from
one tactile signal in the middle fingertip associated with the
k = 30 nearest states in the training set for a particular
trajectory in state space. In this trajectory, the middle finger
skirts the edge of the bump. For states less than−13.2, there is
little variance among the signals of the30 neighbors. However,
during the portion of the trajectory where the finger interacts
with the bump, there is a clear bimodal distribution over
signals within the neighborhood. Sometimes the finger slips
off of the bump and produces the lower trajectory in Figure 10.
Sometimes the finger remains on the bump and produces the
upper trajectory. Clearly a single Gaussian distribution is a
poor fit for this data. Given state uncertainty in the training
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Fig. 11. Performance of the Gaussian mixture measurement model averaged
over a test scan consisting of 20 swipes. The solid line in (a)illustrates local-
ization error on the plastic bump for the mixture of Gaussians measurement
model. The dotted line shows average localization error for the single Gaussian
model (repeated from Figure 9). (b) compares the average performance for
the plastic bump (the blue solid line) with the average performance for the
snap (the green dashed line) and the grommet (the black dotted line) using the
mixture of Gaussians measurement model. The centers of the threefeatures
are aligned with zero on the horizontal axis.

set, we need a measurement model that associates some states
with a multimodal measurement distribution.

A number of techniques can be used to fit a model to
a multimodal distribution. A variant of EM could be used
to fit a mixture of Gaussians [29]. Alternatively, Gaussian
process regression might be used to fit a non-parametric
model [29], [30]. However, this paper leaves these more
sophisticated models to future work. Currently, we take a lazy-
learning approach that models the multimodal distributionas
a Gaussian mixture defined directly over the training data. In
particular, we model the likelihood of a tactile measurement
vector,zt, as:

P (zt|x) = η
∑

xi∈Dx

φ(xi)N (zt; zt(xi),Σt) , (9)

whereDx is the set of all states in the training data set,zt(x)
is the tactile measurement in the training set corresponding
to statex, Σt is a user-defined spherical variance, andη is
a normalizing constant.φ(xi) is a radial basis function that
penalizes the contributions from elements of the data set with

associated states that are far from the query state:

φ(xi) = N (xi|x,Σx) ,

whereΣx is another user-defined parameter. In the subsequent
experiments, we have setΣx = diag(0.0075) and Σt =
diag(0.001).

The results of incorporating this model into Bayesian lo-
calization are illustrated in Figure 11. As before, these results
are averaged over 20 test swipes. This version of localization
is identical with that used in Section III-D except that the
likelihood of tactile measurements,P (zt|x) in Equation 8, is
modeled as the Gaussian mixture. Figure 11(a) compares the
performance of the Gaussian mixture version of localization
(the solid line) with the performance of the single Gaussian
model (the dotted blue line) from Figure 9. Just as localization
performance was improved by incorporating tactile informa-
tion in addition to proprioceptive information, performance is
again improved by adopting the Gaussian mixture model over
a single Gaussian model. Correct localization occurs earlier
than it did with the single Gaussian model and there is less
integration of error once the fingertips move off the edge of
the bump.

Figure 11(b) compares average localization performance for
the flexible plastic bump with the average performance for the
snap and the grommet. Comparing with Figure 7, the mixture
of Gaussians model improves localization performance for all
three features. However, notice that Figure 11(b) indicates
that the mixture of Gaussians is capable of localizing the
plastic bump and the snap before the fingers actually touch
the feature (the center of the feature is at the origin of the
coordinate frame). This suggests that the model is overfit tothe
training data. The early localization is a result of information
content in the “featureless” region of the flexible materialprior
to contacting the feature. Looking at Figure 8, notice that
there is subtle information content prior to touching the bump
(otherwise, we would expect the non-bump measurements to
be perfectly uniform). This subtle information does not exist
in the proprioceptive information alone (Figure 6). From the
perspective of contact mechanics, we hypothesize that the
stiffness and surface properties of the flexible plastic have
slight variations over the “featureless” region as a function of
the distance of the contact point to the edge of the plastic,
the position of the contact with respect to the bump, or
differences in the surface properties of the plastic. Although
we have found this pre-feature model to be repeatable with
respect to data collected on different days, we expect that over
longer time horizons, this pre-feature tactile variation is not
repeatable.

A. Modeling off-feature states as a single state

One way to address the long time horizon overfitting prob-
lem is to divide state space in the training set into anon-feature
region and anoff-featureregion that are defined manually. For
all states in the off-feature region, the measurement likelihood
is modeled by a single likelihood function that models data
taken from the entire region. This prevents the filter from
differentiating between off-feature states. Essentially, we are



lumping all off-feature state hypotheses into a single null
hypothesis with a single likelihood model.

Consider the case of two tactile sensors (for example,
the index and middle finger tips) with positionsa and b

and corresponding measurement vectorszat and zbt such that
zt = {zat , z

b
t}. Whereas in earlier sections, the measure-

ment likelihood was conditioned on the palm position, now
marginalize over the two sensor positions:

P (zat , z
b
t |x) =

∑
a,b

P (zat |a)P (zbt |b)P (a, b|x). (10)

Define functions,A(x) andB(x), that evaluate to the position
of sensorsa and b, respectively, when the palm is atx.
ApproximateP (a, b|x) to be1 whena ∈ A(x) andb ∈ B(x)
and zero otherwise. Then, Equation 10 becomes:

P (zt|x) =
∑

(a,b)∈A(x)×B(x)

P (zat |a)P (zbt |b). (11)

If a is in the on-feature region, then we estimateP (zai |a) as
before using Equation 9. Otherwise, we estimate:

P (zai |a) = N (zai |ẑoff ,Σoff ), (12)

where ẑoff and Σoff are the sample mean and covariance
taken over all points in the off-feature region.

Figure 12 illustrates the results of aggregating off-feature
states. These results were obtained using the same plastic
bump dataset that was used to produce the results in Fig-
ure 11. The solid line in Figure 12(a) shows the error for
the on-feature/off-feature approach averaged over a test scan
comprised of 20 swipes. The dashed line shows error for our
previous approach reproduced from Figure 11. As expected,
this new model does not localize the feature before the fingers
come into contact with it. Figure 12(b) shows variance in the
particle set averaged over the 20 test swipes. The new model
has a high variance that persists until the fingers come into
contact with the feature at approximately0.5 inches prior to
the bump center (the bump has approximately a one inch
outer diameter). From a practical perspective, the decrease
in variance when the fingers contact the feature is useful
for signaling that the localization system has reached the
on-feature region and probably has a good state estimate.
Essentially, this on-feature/off-feature approach transforms the
continuous state estimation problem into a hybrid estimation
problem where the hypothesis space consists of the space of
on-feature states and the binary possibility that the system is
in an off-feature state. The likelihood of the binary off-feature
hypothesis is the marginal likelihood of all particles in the off
feature region.

B. Applications

The main motivation for using touch sensing to local-
ize haptic features is that it can improve the robustness of
manipulation tasks involving soft materials. This subsection
illustrates this advantage in the context of two tasks: a plastic
manipulation task and a grommet insertion task. The objective
of the plastic manipulation task is to locate a bump in the
flexible plastic using touch sensing and move the tip of the
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Fig. 12. Performance of the on-feature/off-feature approach (solid lines) com-
pared with the undifferentiated mixture of Gaussians approach (dotted lines).
The solid lines show the performance of the featureless averaging method.
The dashed lines show the Gaussian mixture performance for comparison. (a)
shows average localization error. (b) shows average localization variance. The
origin on the horizontal axis denotes the center of the feature.

thumb inside the recess of the bump. This is part of a larger
factory assembly task. The objective of the grommet insertion
task is to localize a grommet using touch sensing and insert
the grommet onto a fastener. This is part of a NASA task.

First, consider the thumb-in-bump task (illustrated in Fig-
ure 13). Before localizing the bump, it was assumed that
the bump position was known to within a square region
two inches on a side. Given this approximate location, the
robot reached to the nominal bump position and compliantly
closed its fingers around the plastic using the interaction
procedure described in Section II-B. Then the robot performed
a swipe. During the swipe, the bump was localized using
the single-Gaussian model of the proprioceptive information,
the mixture of Gaussians model of the tactile information,
and the separate modeling of the featureless regions (all the
techniques proposed in this section). If, at any point during
filtering, the variance (the trace of the covariance matrix)of
the filer particles fell below a given threshold, then filtering
stopped and the thumb was inserted into the bump. Otherwise,
an additional swipe was performed. The insertion itself was
performed using a hand-coded procedure, parametrized by the
maximum likelihood bump location, that changed all finger
joints to stiffness mode, moved the thumb into the bump,



(a) (b) (c) (d) (e) (f)

Fig. 13. Illustration of the thumb insertion task. The objective is to insert the thumb into the recessed plastic bump. Frames(a) through (d) illustrate the
swipe. Frames (e) and (f) illustrate the thumb insertion.

(a) (b) (c) (d) (e) (f)

Fig. 14. Illustration of the grommet insertion task. Frames (a)through (e) illustrate the swipe. Frame (f) illustrates the insertion.

and simultaneously gripped the plastic from the other side
using the fingers. The diameter of the interior of the bump
was approximately0.85 inches. The diameter of the thumb
tip was approximately0.65 inches. In order to successfully
insert the thumb into the bump, the localization error couldbe
no greater than approximately0.35 inches. Any greater error
would cause the thumb to “pop” out of the bump during the
insertion.

While we do not have quantitative statistics on the success
and failure rate of this insertion task, it was qualitatively
very successful. We believe that most failures were associated
with sensor calibration problems. As a result, we developeda
short calibration procedure that was performed before running
localization experiments or demonstrations. This procedure au-
tomatically relaxes all finger tendons, resets the tension affine
offsets, and recalculates tendon gains after re-tensioning [27].
Out of the more than100 attempts, the thumb insertion
task succeeded approximately95 percent of the time. Of
those attempts that did not succeed, almost all failures were
attributed to a failure to run the calibration procedure prior to
the test or a failure in another part of the system.

We also applied our localization technique to a grommet
insertion task. The objective was to localize a grommet embed-
ded in fabric that was placed in the robot hand in an unknown
position, grasp the grommet, and insert the grommet onto a
fastener. (This was actually aquarter turn fastener that must
be turned after insertion to lock the fabric in place. However,
in this paper we ignore the turning part and just perform the
insertion.) The grommet was placed in the robot hand in an
unknown (but constrained to the region of states from which
the swipe would cause the fingers to pass over the bump) con-
figuration (Figure 14(a)). Then, the hand compliantly closed

around the fabric and performed a swipe (Figure 14(b-d)). As
in the bump insertion experiment, the localization techniques
proposed in this section were applied. Filtering was stopped
when particle variance dropped below a threshold. At this
point, the robot gripped the fabric tightly (Figure 14(e)) and
moved to an insertion location (Figure 14(f)) calculated using
the maximum likelihood grommet position and the fastener
location that is assumed to be known (we assume that the
fastener is fixtured to a large object that can be localized using
other methods.) The insertion was performed under Cartesian
stiffness control with a stiffness center located at the grip point.
This task was much more difficult than the thumb insertion
task because the required tolerances were very small. In order
to successfully insert the grommet, localization error could
be no greater than0.2 inches. Since this is very close to the
expected localization error for the grommet (see Figure 11(b)),
even a small errors in force sensor calibration caused this
task to fail. Compared with the thumb-in-bump insertion, we
executed this task relatively few times (only approximately
20 times). The task was likely to succeed when executed
directly after taking a training data set. However, our system
was subject to sufficient drift in the sensors that we could not
execute successfully on a different day without taking a new
training set.

V. D ISCUSSION

This paper has examined methods of using proprioceptive
and tactile measurements to estimate the position of a feature
(such as a button, snap, or grommet) embedded in a flexible
material such as thin plastic or fabric. We have character-
ized the relative utility of the two types of measurements
with respect to localization performance and shown that they



contain different kinds of information. We have demonstrated
that using both types of information rather than just propri-
oceptive information results in a sizable gain in localization
performance. Given the state estimation errors inherent inour
training mechanism, we have found the tactile measurement
model to be multimodal and proposed a mixture of Gaussians
model that results in an additional improvement in localization
performance. Finally, we have explored two applications ofour
approach that are relevant to manufacturing and space appli-
cations: a flexible plastic manipulation application (Figure 13)
and a grommet insertion application (Figure 14). Although
the study in this paper of localization during manipulation
has been experimental, the conclusions can be expected to
generalize beyond the particular hardware platform used. Al-
though Robonaut 2 is an extremely sophisticated platform,
only two hardware capabilities are needed in order to apply
the conclusions from this paper: finger compliance and tactile
sensing. These two features can be realized with less expensive
hardware.

The idea of using Bayesian filtering to localize materials
held in a robot hand is attractive. However, the approach
proposed in this paper has significant limitations that should
be understood. First, from an implementation perspective,
we have found that the approach is very sensitive to force
sensor calibration errors. Although this sensor error was not
a problem for the thumb-in-bump insertion task because of
the relatively large tolerances, it became more of a problem
for the tight-tolerance grommet insertion task. This highlights
the continuing need for more robust and accurate force and
tactile sensing. Perhaps a more significant limitation is that
localization based on a single haptic map does not generalize
well to different interaction scenarios or to different haptic
features. Given a particular haptic map, our method can
be expected to localize the feature used to create the map.
However, localization using the same map will not perform as
well when used to localize differently shaped haptic features
or even when the same haptic feature is presented in a different
orientation. For example, the haptic map created for the plastic
bump will not generalize to plastic bumps of different sizes.
In addition, the haptic map used to localize the grommet in
one orientation cannot be used to localize the same grommet
when it is presented in different orientations. Note that this
sensitivity to orientation only applies to non-symmetric haptic
features. For example, the plastic bump training set can be used
to localize the plastic bump regardless of bump orientation
because the bump is symmetric (of course, localization is
always relative to the orientation of the hand itself during
interaction). It should also be noted that our approach inherits
a degree of robustness relative to errors in the haptic map from
the general robustness properties of the particle filter. Small
differences in size or orientation between the haptic feature
during training and testing should not be expected to affect
localization accuracy significantly.

In the future, these limitations might be addressed in several
ways. One approach might be to train the system on a class
of features rather than on a single feature. For example, one
might train the system to recognize plastic bumps of different
sizes or grommets presented in different orientations. However,

since our current procedure requires45 minutes of training
time to recognize a single feature, it would clearly become
infeasible to train the system on large classes of objects ina
reasonable period of time. An alternative approach might be
to take a compositional approach where the system is trained
to recognizepartsof a feature rather than an entire monolithic
feature. For example, the system might be trained to recognize
a library of curves with different curvatures and orientations.
Features would be described in terms of located collectionsof
curves. While this approach would extend the representational
capabilities of this approach, the challenge would be to identify
the relevant atomic shape primitives.
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