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Abstract— The potential utility of tactile sensors in manipu-
lation has long been recognized. However, there are very few
examples in the literature of systems that use tactile information
any more complex than binary contact/no-contact sensors. This
paper approximates a direct mapping between hand-object state
and high-dimensional tactile measurements based on training
data. Although it can be precise, tactile data provides only
partial state information at any given time. Therefore, we inte-
grate tactile information over time using a particle filter. Several
variations on a basic measurement model are considered and
the paper evaluates the relative utility of each one. Since we
create our model from a training data set rather than building a
geometric model of the manipulation interaction, the approach
works well localizing difficult-to-model objects such as flexible
materials or fabrics. We demonstrate that the approach can
localize a haptic feature in a piece of flexible plastic to within
one tenth of an inch using sensors mounted on the phalanges of
human-sized fingers. All demonstrations are performed using
Robonaut 2.

I. INTRODUCTION

The problem of localizing hand-object configuration from
tactile data is important to robot manipulation. While exten-
sive data is available from head-mounted cameras or laser
range sensors, this information suffers from occlusions and
typically depends on precise calibration between the head
and end-effector. Although tactile data does not provide
information about the entire manipulation interaction in a
single time step, it measures partial information regarding
the state of the manipulation interaction very accurately.
However, although tactile sensing has great potential, only
a few methods have been proposed for using it to locate or
characterize an object that a robot touches [1], [2], [3], [4].
These methods generally track the pose and shape of the
object based on the position of the parts of the manipulator
that touch the object. In this paradigm, tactile sensing is
used only indirectly to measure the presence of contact. One
possible exception is [3], where the authors augment contact
position information by estimating the contact surface normal
as well. Nevertheless, the three-dimensional surface normal
encapsulates only a small portion of the total information
that is potentially available from tactile measurements. It
is also based on a geometric model of the interaction and
as a consequence requires carefully calibrated load cells to
estimate the surface normal. Moreover, since these methods
rely on matching hand geometry to object geometry, they
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Fig. 1. Robonaut 2 hand localizing a bump in a piece of flexible plastic.

are completely unsuitable for state estimation with flexible
or deformable materials.

This paper considers the problem of estimating hand-
object configuration directly from tactile information. In
particular, we focus on the problem of locating a haptic
feature (a grommet, button, snap, etc.) embedded in a flexible
material (Figure 1). The flexible material is compliantly
squeezed between the fingers of a robot hand and pulled so
that the material slides through the fingers. Tactile sensors
embedded in the finger tips provide relevant measurements as
they move over the grommet. We experimentally show that
a characteristic signature is obtained when the fingers move
over the haptic feature as described above. This signature
traces out part of a “tactile map.” Our approach is to
construct the tactile map that is subsequently used during a
training phase as a basis for localization. On the assumption
of non-zero process noise (uncertain relative hand-object
motion), we use a particle filter to track hand-object state.
Essentially, the particle filter matches the haptic signature
obtained during testing with an appropriate corresponding
trajectory on the map. We find that the analytical form of the
measurement model has important performance implications.
We compare the performance of a single Gaussian model
with a multi-Gaussian model. We also propose a method
for averaging “featureless” measurements in the model in
order to minimize overfitting. One advantage of the proposed
approach is that it does not rely on precise robot calibration
because the haptic map is constructed during a training
phase. In fact, it is unnecessary to calibrate the tactile
load cells at all; the training phase is capable of modeling
raw sensor measurements as well as measured loads. The
paper first describes our experimental scenario and the tactile
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Fig. 2. Each phalange of the R2 finger is equipped with a phalange load
cell. (a) illustrates the finger with attached load cells. (b) shows the design
of a single load cell.2

sensors involved. Then, we propose various forms of the
measurement model and compare their relative performance.

II. TACTILE INTERACTION SCENARIO

A significant amount of relevant tactile information can
be measured by touching material with high quality tactile
sensors. We summarize the design of the tactile sensors and
introduce the tactile map.

A. Robonaut 2 experimental setup

.
Our approach to hand-object localization is predicated on

manipulator compliance and high-quality tactile sensors. In
general, these capabilities can be realized in a number of
ways. The Robonaut 2 implementation involves a humanoid
robot hand with active stiffness control in the fingers [5] and
miniature load cells mounted on the finger phalanges [6].
Each load cell is comprised of a cap that captures and
transmits applied loads to a spring element (Figure 2) instru-
mented with flea-sized strain gauges that actually measure
the loads. The cylindrical load cell form factor allows it to
be mounted on the phalanges of the Robonaut 2 fingers. The
shape of the spring element is such that any wrench applied
to the cap results in a bending moment in one or more of bars
instrumented by strain gauges. The mechanics of the spring
element are such that an affine relationship exists between the
measured strains and the applied loads. The sensor cap also
provides overload protection by making secondary contact
with the finger itself when excessive loads are applied.

The experimental setup involved a flexible material (for
example, a flexible sheet of plastic) loosely hanging from
a test rig such that it is free to swing or otherwise move
with respect to the robot. The material was held between
the thumb and forefingers (index and middle fingers) of
the Robonaut 2 hand as illustrated in Figure 1. The thumb
was put in position control mode such that the thumb tip
position remained roughly constant. The index and middle
fingers were put in torque mode so that the material was
squeezed with a constant and controlled force. During the
experiments, the robot hand was pulled away from the test rig
in controlled “sweeps.” As the hand moved, the material was

2Images taken from US patent application number 20100077867 [6] and
can be downloaded from the USPTO website, http://patft.uspto.gov.

pulled through the fingers such that the fingers experienced
aspects of the haptic feature.

B. Interacting with the flexible material

The basic mechanism for interacting with the flexible ma-
terial is to pull it through the fingers by squeezing it between
the thumb and forefingers as illustrated in Figure 3(a). At
each time step during the interaction, each sensor generates
a measurement vector (8-dimensional per phalange sensor)
where each element corresponds to a voltage generated by
a pair of strain gauges. When the fingers interact with a
discontinuity (i.e. a haptic feature) in the surface of the mate-
rial, a characteristic sensor signature is generated. Since each
strain gauge pair responds differently to applied loads, this
signature is different for each element of the measurement
vector.

Figures 3(c) and 3(d) illustrate elements of the haptic
map for the bump in flexible plastic (Figure 3(a)) acquired
by comprehensively “scanning” the hand over the material
surface. This process is illustrated in Figure 3(b). The hand
makes a series of sweeps laterally across the material and
gradually descending. Each sweep is approximately one tenth
of an inch below the previous one. After the scanning process
is complete, the maps illustrated in Figure 3 are constructed
by locally interpolating the measurements at regular grid
points. Each of the two maps shows the interpolation for one
element of the measurement vector (for Robonaut 2, there
are a total of eight elements in each load cell.) Notice that the
two elements of the sensor signal respond to the interaction in
different ways. The signal in Figure 3(c) responds depending
upon where the load cell is with respect to the bump vertical
dimension. The signal in Figure 3(d) responds depending
upon where the load cell is vertically.

III. HAND-OBJECT STATE ESTIMATION

While manipulating the object, the unpredictable nature of
the hand-object interaction results in non-zero process noise.
As a result, it is not strictly correct to align measurements
from different time steps into a single frame and estimate
the maximum likelihood state. Instead, we use a particle
filter to solve a Bayesian filtering problem. In order to apply
the Bayes filter, it is necessary to estimate the likelihood of
measurements given hand-object state. This paper considers
several possible models starting with a single Gaussian
model in this section.

A. Bayesian filtering

The goal of Bayesian filtering is to track the state of a
stochastic system as it changes. It is assumed that state, x, is
a stochastic Markov function of time. At every time step, the
measurements, z, depend only on the current state. Starting
with a prior distribution over state, P (x0), Bayesian filter-
ing recursively updates a posterior distribution, P (xt|z1:t),
where xt is the state at time t and z1:t = {z1, . . . , zt} is
the set of measurements between time 1 and time t. The
update to the posterior (also called the “belief state”) is
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Fig. 3. Creation of the “tactile map.” The fingers make a series of lateral sweeps from right to left. (a) shows the fingers making such a sweep over a
bump in flexible plastic. (b) shows the path of these sweeps. (c) and (d) show two elements (out of a total of eight per sensor) of the haptic map for the
bump. Notice that the two elements of the sensor signal respond differently to the interaction.
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Fig. 4. Tactile maps for a snap (a) and (b) and a grommet (c) and (d).

accomplished in two steps. First, the prediction step updates
the distribution by applying a system model:

P (xt|z1:t−1) =
∫

P (xt|xt−1)P (xt−1|z1:t−1)dxt−1 (1)

The above uses the Markov assumption that
P (xt|xt−1, z1:t−1) = P (xt|xt−1). In the second step,
the posterior distribution is updated in proportion to the
likelihood of having generated the observed measurements,
zt:

P (xt|z1:t) = ηP (zt|xt)P (xt|z1:t−1), (2)

where

η =
1

P (zt|z1:t−1)

is a normalizing constant.
Equations 1 and 2 constitute an optimal solution to the

problem of tracking state in a Markov system. However,
they ignore the question of how the posterior distribution
is represented. Two popular solutions to this problem are
the Kalman filter and the particle filter. The Kalman filter
is optimal, but makes strict (linear system, Gaussian noise)
assumptions regarding the system and measurement models.
The particle filter does not make these assumptions, but
relies on Monte Carlo methods that depend on an adequate
sampling the posterior distribution. This paper uses the
sample importance resampling (SIR) version of the particle
filter [7] to track hand-object state.

B. Single Gaussian measurement model

The single Gaussian model estimates the likelihood of the
measurements, P (z|x), as a Gaussian distribution. At a given
point in time, the state, x, of the system is the position of the
robot palm with respect to the fabric, and the measurement,
z, is the vector of sensor measurements. We require the robot
to interact with the flexible material in a training phase where
the robot sweeps its fingers over the material in a structured
way as illustrated in Figure 3(b). The goal of training is to
construct a dataset, D, consisting of state-measurement pairs,
(x, z). Since state is defined relative to the material itself, it
is important during training for the material to be fixtured
relative to the robot base frame so that relative palm-material
position can be inferred from the palm position relative to
the base.

In order to evaluate the likelihood of P (zi|xi), we take
a locally-weighted approach where the moments of the
Gaussian are estimated using the sample moments of the
k nearest neighbors. Let Nk(xj) ⊆ D be the k pairs,
(x, z) ∈ D nearest xi under a Euclidian distance metric.
Then the likelihood is:

P (zi|xi) = N (z|ẑi, Σi), (3)

where

ẑi =
1
k

∑

(x,z)∈Nk(xi)

z,
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Fig. 5. Localization accuracy as a function of horizontal (i.e. direction of
the sweeps) tactile sensor location averaged over 18 trials at different vertical
locations in the state space. The dotted line shows localization performance
for the fully coupled single Gaussian measurement model. The dashed line
shows performance for the Gaussian model with inter-finger covariance set
to zero. The solid line shows the performance of the sum-of-Gaussians
model.

and
Σi =

1
k

∑

(x,z)∈Nk(xj)

(z − ẑi)(z − ẑi)T

are the sample mean and covariance over the k neighbors.
The localization error of particle filtering using the Gaus-

sian model is illustrated by the dotted and dashed lines
in Figure 5. The state space is a two-dimensional two
inch square, x = (x1, x2) with x1 ∈ [20.5, 22.5] and
x2 ∈ [−13.5,−11.5]. The particle filter uses 75 particles
including 10 particles that are placed uniformly randomly
on each update. The dataset, D is comprised of 16321
samples constructed by scanning the material as illustrated in
Figure 3. Figure 5 gives results averaged over 18 test scans.
After tracking grommet position using the particle filter in
18 different scan configurations, the error as a function
of position was averaged for the 18 runs and reported.
The dotted line shows average particle filter performance
when Equation 3 uses a covariance matrix calculated across
tactile measurements from two fingers (the index and middle
fingers). The dashed line shows performance when it is
assumed that there is zero covariance between the two fingers
(off-diagonal covariance terms between measurements from
different fingers are set to zero). Both measurement models
perform approximately equally as well for positions less that
21.2 (before the fingers touch the bump.) After touching the
bump, there appears to be a small advantage to requiring
zero covariance between the fingers. This suggests that the
inter-finger covariance found in the data is actually overfit
and would disappear with a larger dataset. Since only a
limited amount of data is used in the experiment, it helps
to enforce this constraint. Notwithstanding this difference, it
seems that localization accuracy generally degrades (between
positions 21.6 and 22.2) after initially contacting the bump
at 21.4. One can guess that the reason for this is illustrated in

20.6 20.8 21 21.2 21.4 21.6 21.8 22
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Fig. 6. Measurements as a function of finger position (one element of the
measurement vector) for a single trajectory through state space. The figure
shows measurements corresponding to the 8 nearest neighbors in state space
for each point along the trajectory.

Figure 3(c) and (d). Notice that in these two elements of the
measurement vector, the prominent features (red and dark
blue) are clustered at the edges of the bump rather than in
the middle. This suggests that localization occurs primarily
during periods with prominent measurements. Then, when
the fingers are on the bump and the measurements are less
descriptive, localization error gradually integrates.

C. Sum-of-Gaussians model

Modeling the likelihood distribution as a single Gaussian
ignores the possibility that the distribution is multi-modal. It
is a bit unintuitive that the distribution would be multi-modal:
one might expect a single relative hand-object configuration
to cause the same mechanical reaction forces and result in the
same vector of sensor measurements in all cases. However,
the nature of deformable materials makes it difficult to
obtain exactly the same results each time. Furthermore, one
might imagine that the noise is not necessarily Gaussian
because a stochastic deformation event could result in two
different interaction modes. Moreover, the difficulty involved
in controlling the data collection scenario precisely suggests
that non-Gaussian variation could result simply from material
slippage during training. A look at Figure 6 bears out this
intuition. The plot shows measurements associated with the k
nearest neighbors in state space (k = 8 in the figure) along a
sample trajectory. Notice that between 21 and 21.8, there are
three possible sensor measurement trajectories supported by
the data. Clearly, the Gaussian model is not a good choice for
this type of data. As a result, we consider a sum-of-Gaussians
model.

The sum-of-Gaussians model calculates the likelihood
distribution by marginalizing over the space of true state-
observation pairs:

P (zi|xi) = η
∑

(x,z)∈X×Z

P (zi, xi|z, x),



where η = 1
P (xi)

is assumed to be constant at each time step,
reflecting a uniform prior belief. X and Z denote the state
space and measurement spaces, respectively. Approximating
X × Z by D, we have:

P (zi|xi) = η
∑

(x,z)∈D
P (zi, xi|z, x).

Assuming that the joint likelihood of state and measure-
ments, P (zi, xi|z, x), is corrupted by Gaussian noise, we
have:

P (zi|xi) = η
∑

(x,z)∈D
N

[
xi

zi

∣∣∣∣
x
z

,

(
Σx 0
0 Σz

)]
, (4)

where Σx and Σz are assumed to be diagonal covariance
matrices that are specified by hand.

The results of tracking grommet location using the sum-
of-Gaussians model in conjunction with the particle filter
is illustrated by the solid line in Figure 5. These experi-
ments used position and measurement covariances of Σx =
diag(0.0075) and Σx = diag(0.001) inches. This data is
averaged over the same 18 test sweeps that were used to
produce the Gaussian measurement model results. Notice
that in position 21.2, when the fingers are just beginning
to touch the bump and the sensor measurements are most
prominent, there is little advantage to using the sum-of-
Gaussians model over a Gaussian model. However, after the
initial period of prominent measurements, localization error
accumulates less quickly in the sum-of-Gaussians model.
This suggests that there is subtle information in the mea-
surements after the fingers touch the bump initially that
can improve localization. However, it seems that the single
Gaussian model does not capture this information as well
as the sum-of-Gaussians model. This finding supports the
intuition suggested in Figure 6. After touching the bump for
the first time, the sensor is likely to obtain measurements
drawn from a multi-modal distribution that are best modeled
using the sum-of-Gaussians.

D. Modeling “featureless” regions separately

In order to use the localization results described thus far,
it is important to be able to determine when localization
has occurred. In the controlled experiments that have been
presented, localization occurs when the finger just begins
touching the bump. Of course, in an application scenario,
this information is unknown and must be inferred. Ways of
predicting localization in a particle filter scenario include
calculating the marginal posterior likelihood of the latest
measurements (sum of the particle weights) or calculating
the sample covariance of the particle distribution. When
the marginal measurement likelihood is high or the particle
covariance is low, it is reasonable to assume localization
convergence. Unfortunately, we have found that on some
occasions, both of the above measures falsely signal localiza-
tion convergence before the hand actually touches the bump.
This is a result of the observed measurements having a low
likelihood everywhere in the state space. In this situation,

Fig. 7. Illustration of the on-feature and off-feature regions of state space.
Measurements corresponding to points in Λ are combined into a single
estimate of off-feature measurements.

even unlikely states can appear to be likely enough to cause
the particle filter to converge.

Fundamentally, this problem is caused by overfitting the
model to the training data. In principle, all data collected
when the fingers are not interacting with a haptic feature
should be identical. However, in fact there are always small
variations in the training data. Given our prior knowledge
that the tactile data collected in regions not near the relevant
feature should be identical, we impose this constraint on the
data by adjusting the model. In particular, we define two
regions of state space (shown in Figure 7): the region Λ ⊆ X
known not to be touching the feature and the region Γ ⊆ X
known to contain the feature. Measurements corresponding
to the off-feature states in Λ are modeled together while
measurement corresponding to on-feature states in Γ are
modeled as before.

For example, consider the case of two tactile sensors with
positions a and b and corresponding measurement vectors za

and zb such that z = {za, zb}. Whereas in earlier sections,
the measurement likelihood was conditioned on the palm
position, now marginalize over the two sensor positions:

P (za
i , zb

i |x) =
∑

a,b

P (za
i |a)P (zb

i |b)P (a, b|x). (5)

Define functions, A(x) and B(x), that evaluate to the posi-
tion of sensors a and b, respectively, when the palm is at x.
Approximate P (a, b|x) to be 1 when a ∈ A(x) and b ∈ B(x)
and zero otherwise. Then, Equation 5 becomes:

P (za
i , zb

i |x) =
∑

(a,b)∈A(x)×B(x)

P (za
i |a)P (zb

i |b). (6)

If a is in Γ, then we estimate P (za
i |a) the same as before:

P (za
i |a) = η

∑

(x,z)∈D
N

[
a
zi

∣∣∣∣
A(x)

z
,

(
Σa 0
0 Σz

)]
.

If a is in Λ, then we estimate:

P (za
i |a) = N (za

i |ẑoff , Σoff ), (7)

where ẑoff and Σoff are the sample mean and covariance
taken over all points in Λ.

Figure 8 illustrates the results of modeling featureless
regions separately. In this experiment, training measurements
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Fig. 8. Performance of modeling off-feature regions separately compared to
the sum-of-Gaussians approach of Section III-C. The solid lines show the
performance of the featureless averaging method. The dashed lines show
the sum-of-Gaussians performance from Section III-C for comparison. (a)
shows that localization error is comparable for both approaches. (b) shows
that the particle distribution has higher entropy (more spread out) before
contacting the bump when modeling the off-feature region separately.

taken when the fingers were in front of the bump (in this
experiment, roughly when the palm is at a position less
than 21.2 inches) were combined and used to calculate the
sample mean and covariance in Equation 7. The solid line in
Figure 8(a) shows the error for this approach averaged over
the 18 trials (same as in earlier experiments). The dashed
line repeats the sum-of-Gaussians error from Figure 5 for
comparison. Notice that localization performance is about the
same even though we have smoothed out all off-feature vari-
ation. Figure 8(b) shows the trace of the particle covariance
(sum of the eigenvalues) averaged over the 18 trials. This
essentially measures how peaked the particle distribution is.
Notice that smoothing over the featureless region of state
space has increased the eigenvalues of the covariance matrix
for those points during localization prior to touching the
bump. Essentially, this improves our ability to measure the

convergence event without harming localization accuracy.

IV. CONCLUSION

This paper considers the problem of localizing objects
that a robot touches based on tactile data. In particular, we
focus on the problem of locating haptic features in flexible
materials such as grommets in fabric or bumps in flexible
plastic. Rather than estimating the measurement likelihoods
based on a geometric model of the interaction, this paper
introduces the idea of modeling the state-measurement re-
lationship directly from training data. This modeled state-
measurement relationship constitutes a “tactile map” that
defines what the robot “feels” as its sensors move over the
haptic feature. Several variations on a basic measurement
model are proposed are their relative merits evaluated. Our
evaluation of this approach suggests that it effectively tracks
manipulation state during manipulation interactions. The
experiments show repeatable average localization errors of
approximately one tenth of an inch using tactile sensors
much larger in size (the sensors are approximately the same
size as human fingertips.) Our success with localization in
a low-dimensional space based on relatively simple state-
measurement models suggests that the same type of approach
could be applied to higher dimensional state spaces given
more structured measurement models.
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