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Abstract— Humanoid robots are intended to interact with
unstructured environments and to perform diverse applications.
Often, such work involves manipulating an object coopera-
tively with multiple hands or fingers. This work presents an
impedance based control framework for such cases with multi-
priority tasking. The primary task governs the impedance
response of the object and a secondary task governs the
impedance response of the joints. Using a novel transformation,
the primary task may specify a subset of the object degrees
of freedom (DOFs), allocating the remaining DOFs to the
secondary task. This results in an integrated null space that
includes not only the redundant DOFs of each manipulator
independantly, but also the free DOFs of the object shared
across the manipulators. Simplified expressions are presented
for two-hand and three-fingered grasps. The control law is
validated in simulation on a humanoid robot.

I. INTRODUCTION

The deployment of humanoid robots to manufacturing
sites, especially assembly line work, requires robots to work
in unstructured environments in which they physically inter-
act with tools, surfaces, and disturbances while performing
diverse tasks. Impedance control offers inherent advantages
for such manipulation applications. First presented in [1],
impedance control provides for robust interaction with the
environment along with the flexibility to implement either
force or motion objectives. These same advantages that arise
in single-arm manipulation also apply to the cooperative
control of an object using multiple manipulators.

This article presents an object impedance controller with
two key features. First, it implements a multiple task hier-
archy in which a second impedance relation operates in the
redundant space of the first. The primary task applies to the
operational space, while the secondary task applies to the
joint space. The idea of prioritized multi-tasking is common
in the area of motion control for manipulators [2]; however,
its application to impedance control is new. This concept of
multi-priority impedance was first presented in [3], where it
was applied to single manipulator control. This work extends
the concept to cooperative control, where multiple serial-
chain manipulators contact a single object.

Second, the primary task is defined on the object level
to model a closed-chain mechanism. The primary task may
thus specify impedances for only select degrees of freedom
(DOFs) for the object, allocating the other DOFs to the
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secondary task. Hence, the null space of the primary task ex-
tends beyond the tip of the individual manipulator to include
the free DOFs of the object, a space now integrated across the
manipulators. This paradigm facilitates both the primary and
secondary tasks. For example, when the object’s position is
controlled but its orientation is free, the positional workspace
is larger than it would be if orientation was also constrained.
Moreover, the utilization of the extra freedoms can notably
improve the fidelity of the secondary task, better enabling
such features as joint-limit avoidance, obstacle avoidance,
and null space damping. This closed-chain transformation
presented here is applicable to other existing cooperative
control frameworks as well.

Others have presented impedance laws for cooperative
manipulation, but none with the key features presented
here. In some cases, the laws govern the impedance of the
manipulator end-effectors rather than the true impedance of
the object [4], [5]. Schneider and Canon, on the other hand,
present a controller governing the true object impedance [6].
Their law, however, requires a dynamic model of the object
and estimates of the acceleration, information that is unavoid-
ably noisy and inaccurate. Bonitz and Hsia also present an
object impedance controller; however, their impedance law is
defined with respect to a measure of internal force [7]. They
subsequently eliminate the need for the object dynamics, but
the external interaction of the object is no longer governed
by a true impedance relation.

The formulation presented here applies a true object
impedance. It eliminates the need for the object dynamics by
introducing force feedback on the end-effectors. Such sens-
ing is often accessible and should introduce less error than
attempts to model the object and estimate its acceleration.

The controller is validated in simulation. A fully-dynamic
model of a humanoid robot is created with two 7-DOF arms.
The simulation demonstrates the performance of the multi-
priority impedance and closed-chain task definition.

II. IMPEDANCE LAWS

Our controller implements two impedance relations in a
hierarchical framework. The primary impedance law dictates
the behavior of the object and is defined by the following
relation.

Moÿ + Boẏ + KoΔy = F − F ∗ (1)

ẏ
.=

( v
ω

)
In this expression, Mo, Bo, and Ko are the commanded
inertia, damping, and stiffness matrices respectively, where
all are symmetric, 6 × 6 matrices. v is the linear velocity
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of the reference point on the object while ω is the angular
velocity of the object; both are measured with respect to the
ground reference frame. F and F ∗ represent the net actual
and desired external wrench, respectively, acting on the
object. Δy is the position error, where the linear component
is expressed by (y − y∗) and the angular component is
expressed in an angle-axis representation [8]. Note that the
angular component is thus not a true integral of ω despite
the notation. Throughout this paper, bold symbols refer to
either spatial vectors or column matrices.

At equilibrium, the external force F should be the sum of
the nominal force F ∗ and the spring force KoΔy. If it is
desired for some directions to be pure force control, this may
be accomplished by setting the stiffness of those directions
to zero in Ko. Given positive-definite matrices for Mo, Bo,
and Ko, the impedance relation specifies a stable response.

The redundancy of the manipulators allows for a secondary
task to act in the null space of the object impedance. We
specify a joint space impedance law as:

Mjq̈ + Bj q̇ + KjΔq = τ f , (2)

where Mj , Bj , and Kj are the commanded inertia, damping,
and stiffness matrices, respectively, q is the column matrix
of joint angles for all manipulators in the system, Δq is the
joint position error, and τ f represents the column matrix of
joint torques produced by forces acting on the manipulator.

III. KINEMATIC TRANSFORMATIONS

To implement the object impedance task in (1), a kinematic
transformation is needed to map the accelerations from the
object space down to the joint space. The null space of
this transformation is available for performing the secondary
task. In the literature, such a transformation has been formu-
lated by combining open-chain Jacobian matrices for each
manipulator with a grasp matrix relating the velocity of
each end-effector to the velocity of the object (both linear
and angular). This tacitly assumes that all object degrees
of freedom are specified in the primary task. To free up
some object DOFs, we adopt a closed-chain perspective that
collectively modifies the grasp and Jacobian transformations.
We first review the open-chain transformations and then we
combine them to form the closed-chain transformation for a
reduced set of object DOFs.

A. Open-Chain Kinematics

The free-body diagram of the object and the coordinate
system are shown in Fig. 1, where N and B represent the
ground and body reference frames, respectively. Suppose that
there are n points of contact between the robot and the
manipulated object. For i = 1, . . . , n, let r i be the position
vector from the reference point to the ith contact point and
let vi and ωi be the velocity and angular velocity of an
end-effector frame whose origin coincides with that point.

The acceleration of the body B and the acceleration of the
ith contact frame of reference are related as:

v̇i = v̇ + ω̇ × ri + ω × (ω × ri) + 2ω × vreli + areli

ω̇i = ω̇ + αreli . (3)

Fig. 1. Free-body diagram of object B, showing a force, fi, and a torque,
ti, at contact point i. O and G represent the reference point and center of
mass, respectively.

Here, vreli and areli are the first and second derivatives,
respectively, of ri in the object frame B. ωreli is the relative
angular velocity between B and the ith end-effector frame,
and αreli is its time derivative in the ground frame. If the
end-effectors are rigidly attached to B and if the object
is completely rigid, then all of the relative velocities and
accelerations, i.e., vreli , areli , ωreli , and αreli , must be
zero. In reality, the object and the end-effectors will have
some compliance and relative motion between them that may
be used to induce a desired change in internal forces, as we
shall explore in a later section.

The acceleration relations (3) can be expressed in matrix
form as the familiar grasp mapping. Let ẋ be a column
matrix of all the velocities vi and/or ωi that are constrained
by the nature of the contact between the robot and the object,
and let ÿ be as in (1). Then,

ẍ = Gÿ + h (4)

where G is known as the grasp matrix, and h is a column
matrix of the relevant centripetal, Coriolus, and relative
accelerations. The forms of G and h depend on the grasp
type, as we will see shortly.

While (4) summarizes the dependence of the contact frame
accelerations, ẍ, on the object motion, ÿ, we may also use
the forward kinematics of each branch of the manipulator to
express ẍ in terms of the joint velocities and accelerations,
hence:

ẍ = J q̈ + J̇ q̇ = Gÿ + h, (5)

where J is the column-wise concatenation of Jacobian ma-
trices for the relevant velocities and/or angular velocities of
the contact frames.

B. Grasp Types

In this transformation, the structures of J , G, and h
depend on the grasp type. To illustrate, we will consider
the following two grasp types.

• Two-Hand Grasp: A hand grasp represents a rigid con-
tact that can transfer both arbitrary forces and moments,
thus constraining both the linear and angular motion of
the end-effector. Accordingly, for a two-hand grasp, ẋ
is a column matrix stacking the vectors v1, ω1, v2, ω2.
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• Three-Finger Grasp: If we model a finger contact as a
no-slip, point contact, then it transmits only force and
constrains just position. Accordingly, for a three-finger
grasp, ẋ is a column matrix stacking just the linear
velocities v1, v2, v3.

Referring to (3), the form of each row in G corresponds to
the entry type in ẋ. For each linear velocity entry, v i, G has
a row of the form

[
I3 − r×

i

]
, where Ik is the k×k identity

matrix and r×
i is the skew-symmetric matrix for the cross-

product of ri. For each angular velocity entry, ω i, there is a
row of the form [0 I3]. Similarly, the rows in h compatibly
capture the remaining acceleration terms in (3).

C. Closed-Chain Kinematics

As discussed earlier, it can be advantageous to specify only
a subset of the object DOFs in the primary task, allowing the
remaining DOFs to be allocated to the secondary task. Let ż
represent the p DOFs of the object selected, given in terms
of a p × 6 selection matrix S as ż = Sẏ. If S is constant,
then z̈ = Sÿ and

ÿ = S+z̈ + S⊥μ, (6)

where S+ is the pseudoinverse of S, S⊥ is a 6×(6−p) matrix
spanning the null space of S, and μ ∈ R

6−p is arbitrary. μ
parameterizes the extra DOFs available to the secondary task.

To describe just the constraints that the primary task places
on the secondary one, we eliminate μ as follows. Start by
substituting (6) into (5).

J q̈ + J̇ q̇ = G
(
S+z̈ + S⊥μ

)
+ h (7)

To eliminate μ, we need to find a full-rank matrix E such
that:

EGS⊥ = 0, (8)

where E ∈ R
(6n+p−6)×6n. Multiplying (7) by E gives the

reduced set of equations.

EJ q̈ + EJ̇ q̇ = EGS+z̈ + Eh

= EGS+Sÿ + Eh (9)

Note that E is not unique: any full-rank annihilator of GS ⊥

will suffice. In general, E may be found by standard linear
algebra operations on GS⊥, but we may advantageously pre-
compute it for the most common combinations of task type
and grasp type. We take up this exercise in the following
section.

We see that the matrix EJ plays a similar role in the
closed-chain kinematics as the Jacobian matrix usually plays
in the open-chain kinematics. Drawing on this analogy, we
define the following matrices:

Ĵ
.= EJ, ˆ̇J .= EJ̇, Ĝ

.= EGS+S, ĥ
.= Eh. (10)

This allows us to define our final closed-chain transformation
in the following compact form.

Ĵ q̈ + ˆ̇J q̇ = Ĝÿ + ĥ. (11)

This transformation is not limited to the impedance con-
troller presented here: it is also applicable to other existing

cooperative or coordinated controllers. This will allow the
other controllers to also free up DOFs from the object
space for a secondary task. For first-order controllers, the
transformation becomes Ĵ q̇ = Ĝẏ, where zero relative
velocities are assumed.

IV. EXPLICIT SOLUTIONS

As described in the previous section, the closed-chain
transformation can either be computed online or derived of-
fline. It turns out that the transformation takes on surprisingly
simple expressions for some common grasp and task types,
expressions that require essentially no extra computation
compared to the open-chain formulations. Given the two
grasp types described, we will consider the following three
task types.

1) Full pose control: S = I6, S+ = I6, S⊥ = ∅.
2) Orientation-only control:

S = [0 I3] , S+ =
[

0
I3

]
, S⊥ =

[
I3
0

]
.

3) Position-only control:
S = [I3 0] , S+ =

[
I3
0

]
, S⊥ =

[
0
I3

]
.

For full pose control with any grasp type, there are no free
object DOFs, and we have simply E = I6. The remaining
four cases are as follows.

A. Two-hand, Orientation-only

E =

⎡
⎣ I3 0 −I3 0

0 I3 0 0
0 0 0 I3

⎤
⎦

B. Two-hand, Position-only

E =

⎡
⎣ I3 r×

1 0 0
0 0 I3 r×

2

0 I3 0 −I3

⎤
⎦

C. Three-finger, Orientation-only

E =
[

I3 −I3 0
I3 0 −I3

]

D. Three-finger, Position-only

This final scenario is more challenging, due to the diffi-
culty of explicitly eliminating the free variable ω̇ from the
set of motion constraints. For this scenario,

GS⊥ =

⎡
⎣ −r×

1

−r×
2

−r×
3

⎤
⎦ .

Since the three contacts are not collinear, we may assume
that r1 × r2 �= 0 (after possibly renumbering the points).
Then, after solving for the scalars α, β, γ such that,

r3 = αr1 + βr2 + γr1 × r2. (12)

one may take E as

E =

⎡
⎢⎢⎣

rT
1 0 0
0 rT

2 0
rT

2 rT
1 0

αI3 − γr×
2 βI3 + γr×

1 −I3

⎤
⎥⎥⎦ (13)
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While the derivation of E in this case is not obvious, one
may check that it annihilates GS⊥ and that it is full rank.

V. OBJECT DYNAMICS

Before turning to the control law, we still need to un-
derstand the net contribution of the contact forces on the
object. This includes both the external dynamics as well as
the internal forces acting on the object.

For the external dynamics, consider once again the free-
body diagram in Fig. 1. The equation of motion for the object
can be expressed as follows.

F ma = F + GT f + mĝ (14)

F ma
.=

(
maG

IGω̇ + ω × IGω + rG × maG

)

ĝ
.=

(
g

rG × g

)

Here, F ma is the inertial forces written in terms of: m, the
mass of the object; IG, the moment of inertia about the center
of mass, G; aG, the acceleration of point G; and rG, the
position vector from the reference point O to G. On the
right-hand side, f is the column matrix of contact forces, f i,
and contact torques, ti, (see Fig. 1) arranged to mirror the
list of velocities, vi, and angular velocities, ω i, that appear
in ẋ. Also, F is the net external wrench (force and moment)
about point O, and g is the gravity vector.

For the internal forces, one can see from (14) that they
are defined by the null space of GT . Our approach is to use
the relative acceleration terms to control the internal forces;
hence, they too must lie in the same space. For the sake of
this work, we will control the interaction forces between
the contacts. An interaction force, fij , is defined as the
difference between two contact forces projected along the
line between the contact points [9]. It provides a physically
relevant parameter, i.e. the squeeze force, that lies in the null
space of all grasps. Accordingly, we will use the relative
accelerations to close a servo loop about the interaction
forces. Consider the example of a two point contact, where
uij is the unit vector pointing from contact point i to j.

areli =
(
kP + kI

∫
dt

) (
f∗

ij − fij

)
uij (15)

fij
.= (f i − f j) · uij

kP and kI are the constant gains.

VI. CONTROL LAW

Using these impedance tasks, motion transformations, and
internal forces, we can now present the control law. First, we
will start by modeling the equations of motion for the full
system of manipulators.

M q̈ + c − τ f = τ (16)

Here, M is the joint space inertia matrix, c is the column
matrix of Coriolus, centripetal and gravitational generalized
forces, τ f is the set of joint torques induced by external
forces, and τ is the column matrix of joint torques. Assuming

that forces act on the manipulator only at its contact points
with the object,

τ f = −JT f . (17)

A. Estimation

In preparation for the control law, some unsensed quan-
tities for the object need to be estimated. First, the external
wrench, F , needs to be estimated from the other forces on
the object. Referring to (14), we ignore the inertial forces of
the object to obtain the quasi-static estimate

F = −GT f − mĝ. (18)

Although included here, the object weight can also be
neglected in most cases. In addition, the object velocity can
be estimated with the following least-squares error estimate
of the system as a rigid body:

ẏ = G+J q̇, (19)

where the superscript (+) indicates the pseudoinverse of the
respective matrix.

B. Inverse Dynamics Controller

An Inverse Dynamics Controller [8] simply substitutes a
commanded joint acceleration, q̈∗, for q̈ in (16):

τ = M q̈∗ + c − τ f . (20)

The commanded joint acceleration is expressed in terms of
the commanded object acceleration, ÿ∗, according to (11) as

q̈∗ = Ĵ+
(
Ĝÿ∗ + ĥ − ˆ̇J q̇

)
+ NĴ q̈∗

ns (21)

NĴ

.= I − Ĵ+Ĵ

where q̈∗
ns is an arbitrary vector of accelerations, which is

projected orthogonally into the null space of Ĵ via NĴ . The
two commanded accelerations, ÿ∗ and q̈∗

ns, are found from
the impedance specifications in (1) and (2):

ÿ∗ .= M−1
o (F − F ∗ − Boẏ − KoΔy) ,

q̈∗
ns

.= M−1
j (τ f − Bj q̇ − KjΔq) . (22)

The compensation of internal forces on the object occurs as
relative acceleration commands calculated from (15) which
then plug into the evaluation of h.

To understand the true behavior of the control law, con-
sider the closed-loop analysis of the system. The following
independent closed-loop dynamics can be derived for both
the range space and null space of the system.

S
[
ÿ + M−1

o (Boẏ + KoΔy − ΔF )
]

= SM−1
o F ma (23)

NĴ

[
q̈ + M−1

j (Bj q̇ + KjΔq − τ f )
]

= 0 (24)

The first relation reveals the desired object impedance task
in (1) applied to the DOFs selected by S. If the impedance
matrices are diagonal, the task spaces will remain decoupled.
The right-hand side of this relation represents a disturbance
from the object accelerations due to the quasi-static esti-
mation of F . Notably, this disturbance does not effect the
internal forces. The second relation shows that the desired
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Fig. 2. Kinematic model of the robot. All joint angles are shown in the
zero position, and positive rotation is defined in a right-hand sense. The
origin is located at the center of the shoulder.

link length mass inertia
(m) (kg) (g m2)

shoulders 0.2 – –, –, 200
upper arms 0.4 7 100, 100, 1
lower arms 0.4 7 100, 100, 1
hands 0.1 2 8, 8, 8
object 0.4 2 8, 8, 8

TABLE I

MODEL PROPERTIES

secondary impedance task in (2) is implemented with a
minimum-error projection into the collective null space. The
free DOFs from the object are thus shared amongst the
manipulators for the secondary task.

VII. SIMULATION EXPERIMENTS

A. Model

We developed a fully dynamic simulation to test the
control law. The simulation consisted of two manipulator
arms and a spatial object. The manipulators each modeled
a humanoid arm with seven DOF and three links: an upper
arm, lower arm, and hand. The kinematics of those arms
are shown in Fig. 2. The contact constraints between the
end-effectors and the object were enforced through spring-
damper forces. Each body in the simulation had a symmetric
mass distribution, with the center of mass located at the
center of the link. The physical properties are listed in Table
I. For the six-DOF object, orientation was represented using
xyz Euler angles. The orientation error was subsequently
converted to an axis-angle representation for the sake of Δy
in the control law [8].

B. Experiment

The experiment implemented a two-hand grasp with the
position-only task definition. The robot was asked to hold
the position of the object fixed while achieving a desired
configuration in the joint space. Since the object orientation
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Fig. 3. Object pose for the first experiment. The position remained fixed
while the object rotated to minimize the joint space errors.

was left free, the experiment was expected to rotate the object
while minimizing the errors in the secondary impedance.

The robot started out in the initial position shown in
Fig. 2—but with the lower arms pointing out horizontally
(q4 = q11 = 90◦). This placed the object at an initial orienta-
tion of (90, 0, 0) degs and an initial position of (0, 0.5,−0.4)
m. In this position, we provided a step input to the joint
space impedance commanding the right shoulder to swing
forward (q1 = 30◦). This command tended to pull the left
elbow into the torso, and so we added a second command
to keep the left elbow out (q9 = −10◦). These commands
were implemented through the stiffness of the secondary
impedance, where the only non-zero elements of K j were
the diagonal elements corresponding to q1 and q9. Hence,
all the other joints have no position reference. The damping
was tuned for an overdamped response.

The controller demonstrated the expected results. The
commanded joints converged stably to their references with
no steady-state error. The secondary impedance rotated the
object to satisfy its commands, without perturbing the po-
sition. The object pose is displayed in Fig. 3, and the joint
angles are displayed in Fig. 4. In comparison, using full-
pose control, the joints would only have been able to reach
a steady-state value of q1 = 1◦ and q9 = −6◦.

In addition, the experiment tested the ability to regulate
internal forces. A desired interaction force of f ∗

12 = 20 N was
commanded, which equals the weight of the object. Although
the robot grasp started out initally with zero interaction force,
the controller quickly converged to the reference value and
held the value steady throughout the run. Shown in Fig. 5, the
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Fig. 4. Joint values for the first experiment. The commanded joints (bold
lines) successfully converged to the reference values (dotted lines).

interaction force is unperturbed by the object accelerations,
although these accelerations are not fed back. The complete
list of controller parameters is available in Table II.

Throughout the experiments, the effectiveness of the task
hierarchy was demonstrated. The secondary impedance con-
sistently operated in the null space without interfering with
either the object impedance nor the object internal forces.
Other experiments showed the controller moving the object
with the desired impedance response, while controlling the
joints in an orthogonal space.

0 1 2 3 4 5
0

10

20

30
Interaction Force

time (s)

(N
)

Fig. 5. The controller successfully maintained the desired interaction force
between both hands, unperturbed by either object or joint space motions.

VIII. DISCUSSION

The framework of a primary object impedance and sec-
ondary joint impedance offers substantial advantages for
humanoid robots performing assembly tasks. The impedance
formulation inherently lends itself to robust interaction with
the environment with flexible objectives. The presence of the
joint space impedance adds the ability to achieve such utili-
tarian objectives as obstacle avoidance, joint limit avoidance,
and null space damping. The hierarchy then allows these
joint level commands to be applied without compromising
the object behavior or grasp. This can be an important safety
feature when the object is engaged with the environment. The
combination of these features thus forms a nice framework
for cooperative assembly tasks.

A significant contribution in this work is the ability to
select a subset of the object’s degrees of freedom in the
primary task, allowing the remaining object DOFs to assist
in the attainment of a secondary task. We formulate this in
terms of a closed-chain Jacobian and grasp matrix, Ĵ and
Ĝ respectively. A compatible control law is proposed and
validated in simulations of a two-armed robot. The closed-
chain Jacobian and grasp matrices are not limited to this
control law; they can be applied to other existing cooperative
controllers, be they motion- or force-based controllers.
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parameter value parameter value

Mo I6 Mj M

Bo

[
30I3 0
0 3I3

]
Bj 20I6

Ko

[
200I3 0

0 5I3

]
Kj11, Kj99 600

kP 0.2 kI 0

TABLE II

CONTROLLER PARAMETERS.
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