
Vectors, Matrices, Rotations



You want to put your hand on the cup…

• Suppose your eyes tell you where the mug 
is and its orientation in the robot base frame 
(big assumption)

• In order to put your hand on the object, you 
want to align the coordinate frame of your 
hand w/ that of the object

• This kind of problem makes representation 
of pose important...

Why are we studying this?
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Representing Position: 
Vectors



Representing Position: vectors
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Representing Position: vectors
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The “a” reference frame

Basis vectors
– unit vectors (length of magnitude 1)
– orthogonal (perpendicular to each other)

Vector p in written in a reference frame



What is this unit vector you speak of?

Vector length/magnitude:

Definition of unit vector:

These are the elements of p:
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xb ˆ

yb ˆ

You can turn an arbitrary vector p into a 
unit vector of the same direction this way:
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And what does orthogonal mean?

Unit vectors are orthogonal iff (if and 
only if) the dot product is zero:
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First, define the dot product:
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A couple of other random things
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right-handed 
coordinate frame

left-handed 
coordinate frame

Vectors are elements of nR



The importance of differencing two vectors

The hand needs to make a 
Cartesian displacement of this 
much to reach the object



The importance of differencing two vectors

b

The hand needs to make a 
Cartesian displacement of this 
much to reach the object



Representing Orientation: Rotation 
Matrices

• The reference frame of the hand and the 
object have different orientations

• We want to represent and difference 
orientations just like we did for 
positions…
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Before we go there – review of matrix 
transpose

 TTT BABA Important property:
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and matrix multiplication…
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Can represent dot product as a matrix multiply:



Same point - different reference frames
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Another important use of the dot product: 
projection
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Another important use of the dot product: 
projection

l

Another way of 
writing the dot 
product
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B-frame’s x axis written 
in A frame

B-frame’s y axis written 
in A frame

Same point - different reference frames
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a ŷ B-frame’s y axis written 

in A frame

Same point - different reference frames



B-frame’s x axis written 
in A frame
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B-frame’s y axis written 
in A frame

Same point - different reference frames
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B-frame’s x axis written 
in A frame
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Same point - different reference frames

where:

or



The rotation matrix

To recap:

where:



The rotation matrix

To recap:

where:

We will write:

so:

Notice the way the notation “cancels out”

But, can we do this: ???



The rotation matrix

Multiply both sides by inverse:

But, can we do this: ???

It turns out that:

because the columns of              are unit, orthogonal



The rotation matrix

Multiply both sides by inverse:

But, can we do this: ???

It turns out that:

because the columns of              are orthogonal

This is important!



The rotation matrix

So, if:

Then:



The rotation matrix

Both columns are orthogonal

But:

So, the rows are orthogonal too!



The rotation matrix

Both columns are orthogonal

But:

So, the rows are orthogonal too!

The same matrix can be 
understood both ways!



Example 1: rotation matrix
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Example 2: rotation matrix
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Example 3: rotation matrix
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Rotations about x, y, z
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These rotation matrices encode the basis vectors of the after-
rotation reference frame in terms of the before-rotation 
reference frame



Remember those double-angle formulas…
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Example 1: composition of rotation matrices
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Example 2: composition of rotation matrices
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Example 2: composition of rotation matrices
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