CS 4610/5335: Robotics
 Representation of Orientation

Instructor: Robert Platt rplatt@ccs.neu.edu

College of Computer and information Science
Northeastern University

Fall, 2017

The space or rotations

Special Orthogonal Group (3)

The space of all valid rotation matrices can be described as:

$$
S O(3)=\left\{R \in R^{3 \times 3} \mid R R^{T}=I, \operatorname{det}(R)=+1\right\}
$$

Why it's special: $\operatorname{det}(R)=+1$ NOT $\operatorname{det}(R)=-1$ (i.e. it uses a right handed coordinate frame)
Why it's orthogonal: the columns/rows are orthogonal Why it's a group:
(1) closed under multiplication: if $R_{1}, R_{2} \in S O$ (3), then $R_{1} R_{2} \in S O$ (3).
(2) has identity: $\exists I \in S O(3)$ such that $I R=R$.
(3) has unique inverse
(a) is associative

Representations of rotation

In addition to rotation matrices, we're going to study the following representations of rotation:
(1) Euler angles
(2) Axis angle coordinates (also called exponential coordinates)
(3) Unit quaternions

Euler Angles

Euler angles are a 3-number representation of orientation:

$$
\Gamma=\left(\begin{array}{l}
\phi \\
\theta \\
\psi
\end{array}\right)
$$

First rotate by ϕ about the x axis (yaw); then by θ about the y axis (pitch); and then by ϕ about the z axis (roll):
(1) here we chose the $x-y-z$ ordering, but Euler angles can be defined for any ordering of three non-identical axes.

Euler Angles

First rotate by ϕ about the x axis (yaw); then by θ about the y axis (pitch); and then by ϕ about the z axis (roll):

$$
R=R_{x}(\phi) R_{y}(\theta) R_{z}(\psi)
$$

where:

$$
\begin{aligned}
& R_{x}(\phi)=\left(\begin{array}{ccc}
1 & 0 & \\
0 & \cos (\phi) & -\sin (\phi) \\
0 & \sin (\phi) & \cos (\phi)
\end{array}\right) \\
& R_{y}(\theta)=\left(\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right) \\
& R_{z}(\psi)=\left(\begin{array}{ccc}
\cos (\psi) & -\sin (\psi) & 0 \\
\sin (\psi) & \cos (\psi) & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Problems with Euler Angles

Euler angles do not do a good job encoding the distance between two orientations.

- Two orientations that have very different Euler angle representations could in fact be very similar

For example:

$$
\Gamma_{1}=\left(\begin{array}{c}
0 \\
90 \\
0
\end{array}\right), \Gamma_{1}=\left(\begin{array}{c}
90 \\
89 \\
90
\end{array}\right) \text { (in degrees) }
$$

Although these two angles appear to be very far apart, in fact they are only 1 degree apart.

Problems with Euler Angles

Another problem: gimble lock

- when two axes are aligned
- at gimble lock, cannot represent angular velocities in certain directions.

Axis angle representation

Theorem: (Euler). Any orientation, $R \in S O(3)$, is equivalent to a rotation about a fixed axis, $\hat{k} \in S^{2}$, through an angle, $\theta \in[-\pi, \pi]$.

Axis Angle

Axis angle encodes an orientation as a unit axis, $\hat{k}=\left(\begin{array}{c}k_{x} \\ k_{y} \\ k_{z}\end{array}\right)$, and the magnitude of the angle, θ.

- axis angle is also called "exponential coordinates"
- \hat{k} and θ are often expressed as a single vector, $k=\theta \hat{k}$. (The magnitude of k now encodes the magnitude of rotation, θ.)
- Rotations of less than 180 degrees have a unique axis angle representation (unlike euler angles). A 180 deg rotation can represented two ways.

Converting to axis angle

Given rotation matrix, R, calculate \hat{k} and θ :

- $\theta=\cos ^{-1} \frac{\operatorname{Tr}(R)-1}{2}$,
- $\hat{k}=\frac{1}{\sin (\theta)}\left(\begin{array}{l}r_{32}-r_{23} \\ r_{13}-r_{31} \\ r_{21}-r_{12}\end{array}\right)$
where $R=\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)$, and
$\operatorname{Tr}(R)$ denotes the trace of $R, \operatorname{Tr}(R)=r_{11}+r_{22}+r_{33}$.

Converting back to a rotation matrix

Given axis angle, \hat{k} and θ, calculate the corresponding rotation matrix, R :

- $R=I+S(\hat{k}) \sin (\theta)+S(\hat{k})^{2}(1-\cos (\theta))$
- where $S(\hat{k})$ denotes the skew-symmetric matrix:

$$
S(\hat{k})=\left(\begin{array}{ccc}
0 & -k_{z} & k_{y} \\
k_{z} & 0 & -k_{x} \\
-k_{y} & k_{x} & 0
\end{array}\right)
$$

Why is axis angle a nice representation?

Suppose you are currently at rotation R_{1} and you want to rotate into R_{2}. What axis should you rotate about?

Answer:

- Calculate desired delta rotation, $\delta R=R_{1}^{T} R_{2}$.
- Convert δR into axis angle, \hat{k} and θ
- Rotate θ about \hat{k}
- or ... start rotating with some angular velocity, $\omega=\alpha \hat{k}$, where α is the speed of rotation.

But, axis angle has its problems too...

Suppose you have two orientations encoded in axis angle,
$k_{1}=\left(\begin{array}{c}\pi / 2 \\ 0 \\ 0\end{array}\right)$, and $k_{2}=\left(\begin{array}{c}0 \\ \pi / 2 \\ 0\end{array}\right)$.
Calculate the delta rotation:

- This is not the right answer: $k_{1}-k_{2}=\left(\begin{array}{c}\pi / 2 \\ -\pi / 2 \\ 0\end{array}\right)$.
- according to that, the magnitude of $k_{1}-k_{2}$ is

$$
\left\|k_{1}-k_{2}\right\|=\frac{\pi}{\sqrt{2}}=127.27 \text { degrees }
$$

But, axis angle has its problems too...

$$
\left.\begin{array}{c}
{ }^{1} R_{2}={ }^{B} R_{1}{ }^{T}{ }^{B} R_{2} \\
{ }^{b} R_{1}=R_{x}(\pi / 2)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\pi / 2) & -\sin (\pi / 2) \\
0 & \sin (\pi / 2) & \cos (\pi / 2)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \\
{ }^{b} R_{2}=R_{y}(\pi / 2)=\left(\begin{array}{cc}
\cos (\pi / 2) & 0 \\
\sin (\pi / 2) \\
0 & 1
\end{array}\right) \\
-\sin (\pi / 2) \\
0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
0
\end{array}\right) \quad k_{2}=\left(\begin{array}{l}
\pi / 2 \\
-1 \\
0
\end{array}\right)
$$

But, $\left\|k_{1}-k_{2}\right\|=\frac{\pi}{\sqrt{2}} \neq \frac{2 \pi}{3}$!

What's going on here?

- If k_{1} and k_{2} are both close to the origin, then Euclidean distance is a good approximation for the magnitude of the angle between them.
- But, the approximation gets worse (overestimates angle) as you get further away from the origin...
- This effect is kind of like creating a world map using the Mercator projection ...

What's going on here?

- ...the problem is that $S O(3)$ is not a Euclidean space...

What's going on here?

- so what it it?

Quaternions

Generalization of complex numbers:

$$
Q=q_{0}+i q_{1}+j q_{2}+k q_{3}
$$

$$
Q=\left(q_{0}, q\right)
$$

Essentially a 4-dimensional quantity

Properties of complex

$$
\begin{array}{ll}
i i=j j=k k=i j k=-1 & j k=-k j=i \\
i j=-j i=k & k i=-i k=j
\end{array}
$$

Multiplication: $\quad Q P=\left(q_{0}+i q_{1}+j q_{2}+k q_{3}\right)\left(p_{0}+i p_{1}+j p_{2}+k p_{3}\right)$

$$
Q P=\left(p_{0} q_{0}-p \cdot q, p_{0} q+q_{0} p+p \times q\right)
$$

Complex conjugate:

$$
Q^{*}=\left(q_{0}, q\right)^{*}=\left(q_{0},-q\right)
$$

Quaternions

Invented by Hamilton in 1843:

> Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication $i^{2}=j^{2}=k^{2}=i j k=-1$
> \mathcal{E} cutit on a stone of this bridge

Along the royal canal in Dublin...

Unit Quaternions as a representation of rotation

Let's consider the set of unit
quaternions:

$$
Q^{2}=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=1
$$

This is a four-dimensional hypersphere, i.e. the 3-sphere S^{3}
The identity quaternion is: $\quad Q=(1,0)$
Since: $\quad Q Q^{*}=\left(q_{0}, q\right)\left(q_{0},-q\right)=\left(q_{0} q_{0}-q^{2}, q_{0} q-q_{0} q+q \times q\right)=(1,0)$
Therefore, the inverse of a unit quaternion is: $\quad Q^{*}=Q^{-1}$

Unit Quaternions as a representation of rotation

Associate a rotation with a unit quaternion as follows:
Given a unit axis, \hat{k}, and an angle, $\theta: \longleftarrow$ (just like axis angle)
The associated quaternion is: $\quad Q_{\hat{k}, \theta}=\left(\cos \left(\frac{\theta}{2}\right), \hat{k} \sin \left(\frac{\theta}{2}\right)\right)$
Therefore, Q represents the same rotation as $-Q$

Let ${ }^{i} P=\left(0,{ }^{i} p\right)$ be the quaternion associated with the vector ${ }^{i} p$
You can rotate ${ }^{a} P$ from frame a to $b:{ }^{b} P=Q_{b a}{ }^{a} P Q_{b a}{ }^{*}$
Composition: $\quad Q_{c a}=Q_{c b} Q_{b a}$
Inversion: $Q_{c b}=Q_{c a} Q_{b a}{ }^{-1}$

Quaternions example 1

$$
\begin{aligned}
& \left.=\left(\frac{1}{\sqrt{2}},\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\right)\left(\begin{array}{c}
\frac{1}{\sqrt{\sqrt{2}}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right)\right) \\
& =\left(0,\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right)+\left(\begin{array}{c}
-\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right)\right)=\left(0,\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)\right)
\end{aligned}
$$

Quaternions example 2

Find the difference between these two axis angle rotations:

$$
k_{1}=\left(\begin{array}{c}
\pi / 2 \\
0 \\
0
\end{array}\right) \quad k_{2}=\left(\begin{array}{c}
0 \\
\pi / 2 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& \sin \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \quad Q_{c b}=\left(\frac{1}{\sqrt{2}},\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\right) Q_{b a}=\left(\frac{1}{\sqrt{\sqrt{2}}},\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0
\end{array}\right)\right) \\
& Q P=\left(p_{0} q_{0}-p \cdot q, p_{0} q+q_{0} p+p \times q\right) \\
& Q_{c b}=Q_{c a} Q_{b a}^{-1}=\left(\frac{1}{\sqrt{2}},\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\left(\begin{array}{c}
\left.\frac{1}{\sqrt{2}},\left(\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
0 \\
0
\end{array}\right)\right) \\
=\left(\begin{array}{c}
\left.\frac{1}{2}, \frac{1}{\sqrt{2}}\left(\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right)\right)=\left(\begin{array}{c}
-\frac{1}{2} \\
\left.\frac{1}{2},\binom{\frac{1}{2}}{-\frac{1}{2}}\right)
\end{array} \quad k_{c b}=\left(\begin{array}{c}
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right)\right.
\end{array}\right.
\end{array} . \begin{array}{l}
-1\left(\frac{1}{2}\right)=\frac{2}{3} \pi
\end{array}\right.\right.
\end{aligned}
$$

Interpolation using quaterions

Suppose you're given two rotations, R_{1} and R_{2} How do you calculate intermediate rotations?

$$
R_{i}=\alpha R_{1}+(1-\alpha) R_{2} \Longleftarrow \quad \begin{gathered}
\text { This does not even result in a rotation } \\
\text { matrix }
\end{gathered}
$$

Do quaternions help?

$$
Q_{i}=\frac{\alpha Q_{1}+(1-\alpha) Q_{2}}{\left|\alpha Q_{1}+(1-\alpha) Q_{2}\right|}
$$

Suprisingly, this actually works

- Finds a geodesic

This method normalizes automatically (SLERP):

$$
Q_{i}=\frac{Q_{1} \sin (1-\alpha) \Omega+Q_{2} \sin \alpha \Omega}{\sin \Omega}
$$

