Artificial Potential Functions

Slides borrowed from: Latombe's book and slides, Choset, Kuffner

Problem

Given:

- a point-robot (robot is a point in space)
- a start and goal configuration

<u>Find</u>:

- path from start to goal that does not result in a collision

Potential Functions

- Stay away from obstacles: Imagine that the obstacles are made of a material that generate a repulsive field
- Move closer to the goal: Imagine that the goal location is a particle that generates an *attractive* field

Potential Functions

Potential Functions

stay from the obstacles

Potential Function Limitations

Potential field

Zoomed in view

- Completeness?
- Problems in higher dimensions

Potential Function Limitations

• Potential fields in general exhibit local minima

Application to manipulators

 $\dot{q} = J_{ee}^T \dot{x}_d + J_2^T \dot{x}_2 + J_1^T \dot{x}_1$ U_o U_q