

Markov Decision Processes

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. AIMA
3. Chris Amato

Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems,
e.g. robot planning using A*

But only in deterministic domains...

Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems,
e.g. robot planning using A*

A* doesn't work so well in stochastic environments...
!!?

Stochastic domains

So far, we have studied search

Can use search to solve simple planning problems,
e.g. robot planning using A*

A* doesn't work so well in stochastic environments...
!!?

We are going to introduce a new framework for encoding problems
w/ stochastic dynamics: the Markov Decision Process (MDP)

Markov Decision Process (MDP): grid world example

+1

-1

Rewards:
– agent gets these rewards in these cells
– goal of agent is to maximize reward

Actions: left, right, up, down
– take one action per time step
– actions are stochastic: only go in intended
direction 80% of the time

States:
– each cell is a state

Markov Decision Process (MDP)

Deterministic
– same action always has same outcome

Stochastic
– same action could have different outcomes

1.0 0.1

0.8

0.1

Markov Decision Process (MDP)
Same action could have different outcomes:

0.1
0.8

0.1

0.1
0.8

0.1

s' T(s,a,s')

s_2 0.1

s_3 0.8

s_4 0.1

Transition function at s_1:

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Technically, an MDP is a 4-tuple

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Technically, an MDP is a 4-tuple

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Technically, an MDP is a 4-tuple

But, what is the objective?

Markov Decision Process (MDP)

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Objective: calculate a strategy for acting so as to maximize
the future rewards.

– we will calculate a policy that will tell us how to act

Technically, an MDP is a 4-tuple

What is a policy?

A policy tells the agent what action to execute as a function of state:

Deterministic policy:

– agent always executes the same action from a given state

Stochastic policy:

– agent selects an action to execute by drawing from a
probability distribution encoded by the policy ...

Plan might not be optimal

U(r,r)=15

U(r,b)=15

U(b,r)=20

U(b,b)=20

The optimal policy can achieve U=30

Policies versus Plans

Policies are more general than plans

Plan:
– specifies a sequence of actions to execute
– cannot react to unexpected outcome

Policy:
– tells you what action to take from any state

Another example of an MDP

 A robot car wants to travel far, quickly
 Three states: Cool, Warm, Overheated
 Two actions: Slow, Fast
 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Markov?

transitions

State at time=1
State at time=2

Since this is a Markov process, we assume transitions are Markov:

Markov assumption:

Transition dynamics:

Conditional independence

Objective: maximize expected future reward

Expected future reward starting at time t

Examples of optimal policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Objective: maximize expected future reward

Expected future reward starting at time t

What's wrong w/ this?

Objective: maximize expected future reward

Expected future reward starting at time t

What's wrong w/ this?

Two viable alternatives:

1. maximize expected future reward over the next T timesteps (finite horizon):

2. maximize expected discounted future rewards:

Discount factor (usually around 0.9):

Choosing a reward function

A few possibilities:
– all reward on goal
– negative reward everywhere

except terminal states
– gradually increasing reward

as you approach the goal

In general:
– reward can be whatever you

want

+1

-1

Discounting example

 Given:

 Actions: East, West, and Exit (only available in exit states
a, e)

 Transitions: deterministic

 Quiz 1: For = 1, what is the optimal policy?

 Quiz 2: For = 0.1, what is the optimal policy?

 Quiz 3: For which are West and East equally good when in
state d?

Value functions

Expected discounted reward if agent acts optimally
starting in state s (value function).

Game plan:

1. calculate the optimal value function

2. calculate optimal policy from optimal value function

Grid world optimal value function

Noise = 0.2
Discount = 0.9
Living reward = 0

Grid world optimal action-value function

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration

How do we calculate the optimal value function?

Answer: Value Iteration!

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3. for all

4.

5. if V converged, then break

Value iteration example

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3. for all

4.

5. if V converged, then break

Let's look at this eqn more closely...

Value iteration

Value of getting to s' by taking a from s:

reward obtained on this time step

discounted value of being at s'

Value iteration

Value of getting to s'
by taking a from s

Expected value of
taking action a

Why do we maximize?

Value iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3. for all

4.

5. if V converged, then break

How do we know that this converges?

How do we know that this converges to the optimal value function?

Value iteration

At convergence, this property must hold (why?) This is called the
Bellman Equation

What does this equation tell us about optimality of V?

– we denote the optimal value function as:

Gauss-Siedel Value Iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3. for all

4.

5. if V converged, then break

Regular value iteration maintains two
V arrays: old V and new V

Gauss-Siedel maintains only one V matrix.
– each update is immediately applied
– can lead to faster convergence

Computing a policy from the value function
Notice these little arrows

The arrows denote a policy
– how do we calculate it?

Computing a policy from the value function

In general, a policy is a distribution over actions:

Here, we restrict consideration to deterministic policies:

Given an optimal value function, V*, we calculate the optimal policy:

Optimal policy Optimal value function

Problem 1: It’s slow – O(S2A) per iteration

Problem 2: The “max” at each state rarely
changes

Problem 3: The policy often converges long
before the values

Problems with value iteration

Policy iteration

Value Iteration
Input: MDP=(S,A,T,r)
Output: value function, V

1. let

2. for i=1 to infinity

3. for all

4.

5. if V converged, then break

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Iteration!

Policy iteration

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Iteration!

Policy Iteration
Input: MDP=(S,A,T,r),
Output: value function, V

1. let

2. for i=1 to infinity

3. for all

4.

5. if V converged, then break

Policy iteration

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Iteration!

Policy Iteration
Input: MDP=(S,A,T,r),
Output: value function, V

1. let

2. for i=1 to infinity

3. for all

4.

5. if V converged, then break

Notice this

Policy iteration

What if you want to calculate the value function for a given sub-optimal policy?

Answer: Policy Iteration!

Policy Iteration
Input: MDP=(S,A,T,r),
Output: value function, V

1. let

2. for i=1 to infinity

3. for all

4.

5. if V converged, then break

Notice this

OR: can solve for value function as the sol'n to a system of linear equations
– can't do this for value iteration because of the maxes

Policy iteration: example

Always Go Right Always Go Forward

Alternative approach for optimal values:

Step 1: Policy evaluation: calculate utilities for some fixed
policy (not optimal utilities!) until convergence

Step 2: Policy improvement: update policy using one-step
look-ahead with resulting converged (but not optimal!)
utilities as future values

Repeat steps until policy converges

This is policy iteration

It’s still optimal!

Can converge (much) faster under some conditions

Policy iteration

Policy iteration often converges in few iterations, but each is expensive

Idea: use a few steps of value iteration (but with π fixed) starting from the
value function produced the last time to produce an approximate value
determination step.

Often converges much faster than pure VI or PI

Leads to much more general algorithms where Bellman value updates and
Howard policy updates can be performed locally in any order

Reinforcement learning algorithms operate by performing such updates
based on the observed transitions made in an initially unknown
environment

Modified policy iteration

Solving for a full policy offline is expensive!

What can we do?

Online methods

Online methods compute optimal action from current state

Expand tree up to some horizon

States reachable from the current state is typically small compared

to full state space

Heuristics and branch-and-bound techniques allow search space

to be pruned

Monte Carlo methods provide approximate solutions

Online methods

Provides optimal action from current state s up to depth d

Recall

Time complexity is O((|S| x |A|)d)

Forward search

V(s) maxaA(s) R(s,a) T
s

 (s,a, s)V(s)

Requires a lower bound Ṳ(s) and upper bound Ū(s)

Worse case complexity?

Branch and bound search

Estimate value of a policy by sampling from a simulator

Monte Carlo evaluation

Requires a generative model (s’,r) ∼ G(s,a)

Complexity? Guarantees?

Sparse sampling

Requires a generative model (s’,r) ∼ G(s,a)

Complexity = O((n ×|A|)d), Guarantees = probabilistic

Sparse sampling

UCT (Upper Confident bounds for Trees)

Monte Carlo tree search

Search (within the tree, T)

Execute action that maximizes

Update the value Q(s,a) and counts N(s) and N(s,a)

c is a exploration constant

Expansion (outside of the tree, T)

Create a new node for the state

Initialize Q(s,a) and N(s,a) (usually to 0) for each action

Rollout (outside of the tree, T)

Only expand once and then use a rollout policy to select actions (e.g., random policy)

Add the rewards gained during the rollout with those in the tree:

UCT continued

Continue UCT until some termination
condition (usually a fixed number of
samples)

Complexity?

Guarantees?

UCT continued

Uses UCT with neural net to approximate opponent

choices and state values

AlphaGo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

