
How does this guy remain upright?

Linear Optimal Control



Overview

1. expressing a linear system in state space form

2. discrete time linear optimal control (LQR)

3. linearizing around an operating point

4. linear model predictive control

5. LQR variants

6. model predictive control for non-linear systems



A simple system
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Force exerted by the spring:

Force exerted by the damper:

Force exerted by the inertia of the mass:
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Consider the motion of the mass

• there are no other forces acting on the mass

• therefore, the equation of motion is the sum of the forces:

This is called a linear system. Why?
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Suppose that you apply a force:
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A simple system

Suppose that you apply a force:

Canonical form for 
a linear system



Continuous time vs discrete time

Continuous time

Discrete time
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Continuous time vs discrete time

Continuous time

Discrete time

What are A and B now?



Simple system in discrete time

We want something in this form:
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Simple system in discrete time

We want something in this form:



Continuous time vs discrete time

CT

DT

CT

DT



Exercise: write DT system dynamics

Viscous damping

External force



Exercise: write DT system dynamics

Something else...
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The linear control problem

Given:

System:

Cost function:

where:

Calculate:

Initial state:

U that minimizes J(X,U)

Important problem!

How do we solve it?



One solution: least squares
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Given:

System:

Cost function:

Calculate:

Initial state:

U that minimizes J(X,U)

One solution: least squares



Substitute X into J:

Minimize by setting dJ/dU=0:

Solve for U:

One solution: least squares



Solve for optimal trajectory:

What can this do?

Start here

End here at time=T

Image: van den Berg, 2015



This is cool, but...
– only works for finite horizon problems
– doesn't account for noise
– requires you to invert a big matrix

What can this do?



Let's try to solve this another way
Cost-to-go function: V(x)

– the cost that we have yet to experience if we travel along the minimum 
cost path.

– given the cost-to-go function, you can calculate the optimal path/policy

The number in each cell 
describes the number of 
steps “to-go” before 
reaching the goal state

Example:



Bellman optimality principle:

Let's try to solve this another way

Why is this equation true?



Bellman optimality principle:

Let's try to solve this another way

Cost-to-go from 
state x at time t

Cost-to-go from state 
(Ax+Bu) at time t+1

Cost incurred on 
this time step

Cost incurred after 
this time step



Let's try to solve this another way

For the sake of argument, suppose 
that the cost-to-go is always a 
quadratic function like this:

where:
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For the sake of argument, suppose 
that the cost-to-go is always a 
quadratic function like this:

where:

Then:



Let's try to solve this another way

For the sake of argument, suppose 
that the cost-to-go is always a 
quadratic function like this:

where:

Then:

How do we minimize this term?
– take derivative and set it to zero.



Let's try to solve this another way

How do we minimize this term?
– take derivative and set it to zero.

optimal control as a function of state
– but: it depends on P_{t+1}...



Let's try to solve this another way

How do we minimize this term?
– take derivative and set it to zero.

optimal control as a function of state
– but: it depends on P_{t+1}...

How solve for P_{t+1}???



Let's try to solve this another way
Substitute u into V_t(x):



Let's try to solve this another way
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Let's try to solve this another way
Substitute u into V_t(x):



Let's try to solve this another way
Substitute u into V_t(x):



Let's try to solve this another way
Substitute u into V_t(x):

Dynamic Riccati Equation



Example: planar double integrator

Air hockey table

m=1

b=0.1

u=applied force

Initial position 
of the puck Initial velocity

Goal position

Build the LQR controller for:

Initial state:

Time horizon:

Cost fn:



Example: planar double integrator

Air hockey table

Step 1:
Calculate P backward from T: P_100, P_99, P_98, … , P_1

HOW?
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Example: planar double integrator

Air hockey table

Step 1:
Calculate P backward from T: P_100, P_99, P_98, … , P_1

...
...



Example: planar double integrator

Air hockey table

Step 2:
Calculate u starting at t=1 and going forward to t=T-1

...
...



Example: planar double integrator

origin

0 0.20
0

1

0.2



Example: planar double integrator

u_x, u_y

t



Example: planar double integrator



Example: planar double integrator

origin

00



Example: planar double integrator

origin

00



The infinite horizon case

So far: we have optimized cost over a fixed horizon, T.
– optimal if you only have T time steps to do the job

But, what if time doesn't end in T steps?

One idea:
– at each time step, assume that you always have T
   more time steps to go
– this is called a receding horizon controller



The infinite horizon case

Time step
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Notice that elt's of P stop changing (much) more than 
20 or 30 time steps prior to horizon.

– what does this imply about the infinite horizon case?



The infinite horizon case

Time step
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Notice that elt's of P stop changing (much) more than 
20 or 30 time steps prior to horizon.

– what does this imply about the infinite horizon case?

Converging toward fixed P



The infinite horizon case

We can solve for the infinite horizon P exactly:

Discrete Time Algebraic Riccati Equation



Given:

System:

Cost function:

where:

Calculate:

Initial state:

U that minimizes J(X,U)

So, what are we optimizing for now?



So, how do we control this thing?
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Pendulum

How do we get this system in the standard form:

?

EOM for pendulum:



Pendulum

EOM for pendulum:

How do we get this system in the standard form:



Pendulum

EOM for pendulum:

How do we get this system in the standard form:

!!!!!!!



Linearizing a non-linear system

Idea: use first-order Taylor series expansion

original non-linear system



Linearizing a non-linear system
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original non-linear system

first order term

Linearize about



Linearizing a non-linear system

Idea: use first-order Taylor series expansion

original non-linear system

first order term

Linearize about

We just linearized the system about x^*



Linearizing a non-linear system

Suppose that x^* is a fixed point (or a steady state) of the system...

Then:



Linearizing a non-linear system

Suppose that x^* is a fixed point (or a steady state) of the system...

Then:

where

Change of coordinates



Example: inverted pendulum



Example: inverted pendulum

Linearize about: 



Example: inverted pendulum

where



Example: inverted pendulum

Another way to think about this is:
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Linear Model Predictive Control

Drawbacks to LQR: hard to encode constraints
– suppose you have a hard goal constraint?
– suppose you have piecewise linear state and action constraints?

Answer:
– solve control as a new optimization problem on every time step



Linear Model Predictive Control

Given:

System:

Cost function:

where:

Calculate:

Initial state:

U that minimizes J(X,U)



Linear Model Predictive Control

Given:

System:

Cost function:

where:

Calculate:

Initial state:

U that minimizes J(X,U)

We're going to solve this problem 
by expressing it explicitly as 

a quadratic program



Quadratic program

Minimize:

Subject to:



Quadratic program

Minimize:

Subject to:

Constants are part of problem statement:

x is the variable

Problem: find the value of x that minimizes the objective subject to the constraints



Quadratic program

Quadratic objective function

Linear inequality constraints

Linear equality constraints

Minimize:

Subject to:



Quadratic program

Minimize:

Subject to:



Quadratic program

Minimize:

Subject to:

Why?



Quadratic program

Quadratic objective function



Quadratic program

Quadratic objective function

Inequality constraints



Quadratic program

Quadratic objective function

equality constraints



QP versus Unconstrained Optimization

Minimize:

Subject to:

Original QP



QP versus Unconstrained Optimization

Minimize:

Unconstrained version of original QP

Subject to:



QP versus Unconstrained Optimization

Minimize:

Unconstrained version of original QP

How do we minimize this expression?



QP versus Unconstrained Optimization

Minimize:

Unconstrained version of original QP

How do we minimize this expression?



Linear Model Predictive Control

Minimize:

Subject to:



Linear Model Predictive Control

Minimize:

Subject to:

What are the variables?



Linear Model Predictive Control

Minimize:

Subject to:

What other constraints might we want add?



Linear Model Predictive Control

Minimize:

Subject to:



Linear Model Predictive Control

Minimize:

Subject to:

Can't express these 
constraints in standard LQR



Linear MPC Receding Horizon Control

Minimize:

Subject to:

Re-solve the quadratic program on each time step:
– always plan another T time steps into the future



Controllability

A system is controllable if it is possible to reach any goal state from any 
other start state in a finite period of time.

When is a linear system controllable?

It's property of the 
system dynamics...



Controllability

A system is controllable if it is possible to reach any goal state from any 
other start state in a finite period of time.

When is a linear system controllable?

Remember this?



Controllability

What property must 
this matrix have?



Controllability

This submatrix must be full rank.

– i.e. the rank must equal the 
dimension of the state space



NonLinear Model Predictive Control

Given:

System:

Cost function:

where:

Calculate:

Initial state:

U that minimizes J(X,U)
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NonLinear Model Predictive Control

Given:

System:

Cost function:

where:

Calculate:

Initial state:

U that minimizes J(X,U)



Minimize:

Subject to:

NonLinear Model Predictive Control

But, this is a nonlinear constraint
– so how do we solve it now?

Sequential quadratic programming
– iterative numerical optimization for problems with non-convex 
objectives or constraints
– similar to Newton's method, but it incorporates constraints
– on each step, linearize the constraints about the current iterate
– implemented by FMINCON in matlab...
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