
How do you plan a path
for a robot from start
to goal?

Start

Goal

Path planning: BUGs and wavefront

These notes contain materials from Peter Corke's book and
from Howie Choset's lecture materials.

How do you plan a path
for a robot from start
to goal?

Starting configuration

Goal configuration

Path planning: BUGs and wavefront

Problem we want to solve

Starting configuration

Goal configuration

Given:
– a point-robot (robot is a point in space)
– a start and goal configuration

Find:
– path from start to goal that does not result in a collision

Problem we want to solve

Given:
– a point-robot (robot is a point in space)
– a start and goal configuration

Find:
– path from start to goal that does not result in a collision

Assumptions:
– the position of the robot can always be measured perfectly
– the motion of the robot can always be controlled perfectly
– the robot can move in any directly instantaneously

First attempt: BUGs!

Bug algorithms:
– assume only local knowledge of the environment is available
– simple behaviors: follow a wall; follow straight line toward goal

What the heck?

First attempt: BUG 0

BUG 0:
1. head toward goal
2. if hit a wall, turn left
3. follow wall until a line toward goal will move you away from wall.

(assume we only have local sensing – we cannot sense position
of walls we are not touching)

assume a left-
turning robot

The turning direction
might be decided

beforehand…

First attempt: BUG 0

What happens here?

start

goal

Second attempt: BUG 1

BUG 1:
1. move on straight line toward goal
2. if obstacle encountered, circumnavigate entire obstacle and remember how

close bug got to goal
3. return to closest point and continue on a straight line toward goal

Second attempt: BUG 1

BUG 1:
1. move on straight line toward goal
2. if obstacle encountered, circumnavigate entire obstacle and remember how

close bug got to goal
3. return to closest point and continue on a straight line toward goal

BUG 1 Performance Analysis

How far does BUG 1 travel before reaching goal?

Best case scenario (lower bound):

Worst case scenario (upper bound):

Where
– D denotes distance from start to goal and
– P_i denotes perimeter of ith obstacle

BUG 1 completeness?

Is BUG 1 complete?
– is it guaranteed to find a path if one exists?

Yes? No?

– how would you prove completeness (exercise for class)?

Another bug: BUG 2

m-line

1. head toward goal on m-line

Another bug: BUG 2

m-line

1. head toward goal on m-line

2. if you encounter obstacle, follow it
until you encounter m-line again at a
point closer to goal

Another bug: BUG 2

m-line

1. head toward goal on m-line

2. if you encounter obstacle, follow it
until you encounter m-line again at a
point closer to goal

3. leave line and head toward goal again

Another bug: BUG 2

Is BUG 2 complete?
– Why? Why not?

Another bug: BUG 2

Another bug: BUG 2

How bad can it get?

Lower bound:

Upper bound:

where n_i is the number of s-line intersections
In the ith obstacle.

Wavefront planner (distance transform)

– intensity of a point denotes its (obstacle-respecting) distance from the goal

Idea:
– discretize the workspace into cells
– label each cell with distance from goal by expanding a “wavefront”

Wavefront planner (distance transform)

Idea:
– discretize the workspace into cells
– label each cell with distance from goal by expanding a “wavefront”

Wavefront planner (distance transform)

Idea:
– discretize the workspace into cells
– label each cell with distance from goal by expanding a “wavefront”

Wavefront planner (distance transform)

Idea:
– discretize the workspace into cells
– label each cell with distance from goal by expanding a “wavefront”

Wavefront planner (distance transform)

Idea:
– discretize the workspace into cells
– label each cell with distance from goal by expanding a “wavefront”

Wavefront planner (distance transform)

Idea:
– discretize the workspace into cells
– label each cell with distance from goal by expanding a “wavefront”

Wavefront planner (distance transform)

Idea:
– discretize the workspace into cells
– label each cell with distance from goal by expanding a “wavefront”

Wavefront planner (distance transform)

c

Idea:
– discretize the workspace into cells
– label each cell with distance from goal by expanding a “wavefront”

Wavefront planner (distance transform)

Algorithm:

1. L={goal state}, d(goal state) = 2, d(obstacle states) = 1, d(rest of states) = 0
2. while L != null
3. pop item i from L
4. for all neighbors j of i such that d(j)==0
5. d(j) = d(i)+1
6. push j onto L

c

L: list of nodes in wave front; initially just the goal state
d: distance function over nodes; initially zero everywhere except goal state

Wavefront planner (distance transform)

Algorithm:

1. L={goal state}, d(goal state) = 2, d(obstacle states) = 1, d(rest of states) = 0
2. while L != null
3. pop item i from L
4. for all neighbors j of i such that d(j)==0
5. d(j) = d(i)+1
6. push j onto L

c

L: list of nodes in wave front; initially just the goal state
d: distance function over nodes; initially zero everywhere except goal state

Wavefront planner (distance transform)

Pros: complete, optimal
Time Complexity = ?
Cons = ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

