Path planning: BUGs and wavefront

How do you plan a path for a robot from start to goal?

Start

Path planning: BUGs and wavefront

Starting configuration

How do you plan a path for a robot from start to goal?

Goal configuration

Problem we want to solve

Given:

- a point-robot (robot is a point in space)
- a start and goal configuration

Find:

- path from start to goal that does not result in a collision

Starting configuration

Problem we want to solve

Given:

- a point-robot (robot is a point in space)
- a start and goal configuration

Find:

- path from start to goal that does not result in a collision

Assumptions:

- the position of the robot can always be measured perfectly
- the motion of the robot can always be controlled perfectly
- the robot can move in any directly instantaneously

First attempt: BUGs!

Bug algorithms:

- assume only local knowledge of the environment is available
- simple behaviors: follow a wall; follow straight line toward goal

First attempt: BUG 0

BUG 0:

1. head toward goal
2. if hit a wall, turn left
3. follow wall until a line toward goal will move you away from wall.
(assume we only have local sensing - we cannot sense position of walls we are not touching)

First attempt: BUG 0

- start

What happens here?

Second attempt: BUG 1

BUG 1:

1. move on straight line toward goal
2. if obstacle encountered, circumnavigate entire obstacle and remember how close bug got to goal
3. return to closest point and continue on a straight line toward goal

Second attempt: BUG 1

BUG 1:

1. move on straight line toward goal
2. if obstacle encountered, circumnavigate entire obstacle and remember how close bug got to goal
3. return to closest point and continue on a straight line toward goal

BUG 1 Performance Analysis

How far does BUG 1 travel before reaching goal?

Best case scenario (lower bound): D

Worst case scenario (upper bound): $D+1.5 \sum_{i} P_{i}$

Where

- D denotes distance from start to goal and
- P_i denotes perimeter of ith obstacle

BUG 1 completeness?

Is BUG 1 complete?

- is it guaranteed to find a path if one exists?

Yes? No?

- how would you prove completeness (exercise for class)?

Another bug: BUG 2

1. head toward goal on m-line

Another bug: BUG 2

1. head toward goal on m-line
2. if you encounter obstacle, follow it until you encounter m-line again at a point closer to goal

Another bug: BUG 2

1. head toward goal on m-line
2. if you encounter obstacle, follow it until you encounter m-line again at a point closer to goal
3. leave line and head toward goal again

Another bug: BUG 2

Is BUG 2 complete?

- Why? Why not?

Another bug: BUG 2

Another bug: BUG 2

How bad can it get?

Lower bound:
D

Upper bound:

$$
D+\sum_{i} \frac{n_{i}}{2} P_{i}
$$

where n _ i is the number of s -line intersections In the ith obstacle.

Wavefront planner (distance transform)

- intensity of a point denotes its (obstacle-respecting) distance from the goal

Wavefront planner (distance transform)

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	0	1	2	3	4	5	6	7	8		0	11	12	13	14	15

Idea:

- discretize the workspace into cells
- label each cell with distance from goal by expanding a "wavefront"

Wavefront planner (distance transform)

7	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0		0
6	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1		1	1	1	0	0	0	0	0
3	0	0	0	0	1	1	1	1	1		1	1	1	0	0	0		0
2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0		0
1	0	0	0	0	0	0	0	0	0		0	0	0	0	0			3
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	3		2
	0	1	2	3	4	5	6		8									

Idea:

- discretize the workspace into cells
- label each cell with distance from goal by expanding a "wavefront"

Wavefront planner (distance transform)

Idea:

- discretize the workspace into cells
- label each cell with distance from goal by expanding a "wavefront"

Wavefront planner (distance transform)

7	$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	4	0	0	0	0	$\mathbf{1}$	0	0	0							
3	0	0	0	0	$\mathbf{1}$	5	5	5	5							
2	0	0	0	0	0	0	0	0	0	0	0	0	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	$\mathbf{2}$
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Idea:

- discretize the workspace into cells
- label each cell with distance from goal by expanding a "wavefront"

Wavefront planner (distance transform)

7	$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	4	0	0	0	0	$\mathbf{1}$	6	6	6							
3	6															
	0	0	0	0	$\mathbf{1}$	5	5	5	5							
2	0	0	0	0	0	0	0	0	0	0	0	6	5	4	4	4
1	1	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3
	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3	$\mathbf{2}$
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

Idea:

- discretize the workspace into cells
- label each cell with distance from goal by expanding a "wavefront"

Wavefront planner (distance transform)

Idea:

- discretize the workspace into cells
- label each cell with distance from goal by expanding a "wavefront"

Wavefront planner (distance transform)

7	$\mathbf{1 8}$	17	16	15	14	13	12	11	10	9	9	9	9	9	9	9
6	17	17	16	15	14	13	12	11	10	9	8	8	8	8	8	8
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7
4	17	16	15	15	$\mathbf{1}$	6	6	6	6							
3	17	16	15	14	$\mathbf{1}$	5	5	5	5							
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4	4
	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	3
	17	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3

Idea:

- discretize the workspace into cells
- label each cell with distance from goal by expanding a "wavefront"

Wavefront planner (distance transform)

6	18		16										9		9	9		8	9
	17				14	41	13	12	11										
5	17	16		15	14	41	13	12	11		10	9				7	7	7	7
4	17	16	15	5	1	1	1	1	1		1	1	1				6	6	6
9	17	16	15	1	1	1	1	1	1		1	1	1					5	5
2	17	16	15	14			12	11	10		9	8	7	6			4		
1	17	16	15	14	113			1	10		9	8	7	6		5	4	3	
0	17	16	15	14	413		12												
	0	1	2	3	4	5	6		7		9	1		11			13	14	

Idea:

- discretize the workspace into cells
- label each cell with distance from goal by expanding a "wavefront"

Wavefront planner (distance transform)

Algorithm:

1. $\mathrm{L}=\{$ goal state $\}, \mathrm{d}($ goal state $)=2, \mathrm{~d}($ obstacle states $)=1, \mathrm{~d}($ rest of states $)=0$
2. while L!= null
3. pop item i from L
4. for all neighbors j of i such that $\mathrm{d}(\mathrm{j})==0$
5. $d(j)=d(i)+1$
6. push jonto L

76540210	18										9	9	9	9	9	9
	17		16	15	14	13	12	11	10	9		8	8	8	8	8
	17	16		15	14	13	12	11	10	9	8		7	7	7	7
	17	16	15	15	1	1	1	1	1	1	1	1		6	6	6
	17	16	15	14	1	1	1	1	1	1	1	1	5		5	5
	17	16	15	14		12	11	10	9	8	7	6	5	4		4
	17	16	15	14	13		11	10	9	8	7	6	5	4	3	
	17	16	15	14	13	12										
	0	1	2	3	4	5		7	8				2	13	14	15

L: list of nodes in wave front; initially just the goal state
d: distance function over nodes; initially zero everywhere except goal state

Wavefront planner (distance transform)

Algorithm:

1. $\mathrm{L}=\{$ goal state $\}, \mathrm{d}($ goal state $)=2, \mathrm{~d}($ obstacle states $)=1, \mathrm{~d}($ rest of states $)=0$
2. while L!= null
3. pop item ifrom L
4. for all neighbors j of i such that $\mathrm{d}(\mathrm{j})==0$
5. $d(j)=d(i)+1$
6. push jonto L

7	18										9	9	9	9	9	9
6	17		16	15	14	13	12	11	10			8	8	8	8	8
5	17	16			S		m							7	7	7
4	17	16	15		me		Om	号						5	6	6
C	17	16	15		ns										5	5
2	17	16	15													4
1	17	16	15	14	13		11	10	9	8	7	6	5	4	3	
0	17	16	15	14	13											2
$\begin{array}{llllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$																

L: list of nodes in wave front; initially just the goal state
d: distance function over nodes; initially zero everywhere except goal state

