Rapidly-Exploring Random Trees (RRTs)

Robert Platt
Northeastern University

These slides contain material aggregated/developed by Howie Choset and others

Basic RRT Algorithm (no goal)

function RRT $\left(q_{i n i t}\right)$:

$T=q_{\text {init }}$
for $i=1$ to K do:
$q_{\text {rand }}=$ RANDOM_CONFIG();
T.EXTEND $\left(q_{\text {rand }}\right)$

Basic RRT Algorithm (no goal)

function RRT $\left(q_{i n i t}\right)$:

$T=q_{\text {init }}$
for $i=1$ to K do:
$q_{\text {rand }}=$ RANDOM_CONFIG();
T.EXTEND $\left(q_{\text {rand }}\right)$

Basic RRT Algorithm (no goal)

function RRT $\left(q_{\text {init }}\right)$:
$T=q_{\text {init }}$
for $i=1$ to K do:
$q_{\text {rand }}=$ RANDOM_CONFIG(); T.EXTEND $\left(q_{\text {rand }}\right)$

STEP_LENGTH: How far to sample

1. Sample just at end point
2. Sample all along
3. Small Step

Extend returns

1. Trapped, cant make it
2. Extended, steps toward node
3. Reached, connects to node

Basic RRT Algorithm

function RRT $\left(q_{\text {initit }} q_{\text {goal }}\right)$:

```
\(T=q_{\text {int }}\)
for \(i=1\) to \(K\) do:
    if rand01() < 0.1:
        \(q_{\text {rand }}=q_{\text {goal }}\)
    else
        \(q_{\text {rand }}=\) RANDOM_CONFIG();
    T.EXTEND \(\left(q_{\text {rand }}\right)\)
```

STEP_LENGTH: How far to sample

1. Sample just at end point
2. Sample all along
3. Small Step

Extend returns

1. Trapped, cant make it
2. Extended, steps toward node
3. Reached, connects to node

RRT versus a naïve random tree

Naïve random tree

Growing the naïve random tree:

1. pick a node at random
2. sample a new node near it
3. grow tree from random node to new node

RRTs and
 Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html

Biases

- Bias toward larger spaces
- Bias toward goal
- When generating a random sample, with some probability pick the goal instead of a random node when expanding
- This introduces another parameter
- $5-10 \%$ is probably the right choice

RRT probabilistic completeness

Theorem (LaValle and Kuffner, 2001):
If a path planning problem is feasible, then there exist constants $n _0$ and $a>0$, such that:

$$
P(\text { a path is found }) \geq 1-e^{-a n}
$$

where $n>n _0$ is the number of samples

Notice that this is exactly the same theorem as given for PRMs...

RRT-Connect

A single RRT-Connect iteration...

1) One tree grown using random target

2) New node becomes target for other tree

3) Calculate node "nearest" to target

4) Try to add new collision-free branch

5) If successful, keep extending branch

$q_{\text {new }}$

5) If successful, keep extending branch

5) If successful, keep extending branch

6) Path found if branch reaches target

7) Return path connecting start and goal

Basic RRT-Connect

function RRT_CONNECT $\left(q_{\text {init }}, q_{\text {goaa }}\right)$:

$$
T_{a}=q_{\text {initit }} T_{b}=q_{\text {goali }}
$$

$$
\text { for } i=1 \text { to } \mathrm{K} \text { do }
$$

$$
q_{\text {rand }}=\text { RANDOM_CONFIG(); }
$$

$$
\text { if }\left(T_{a}: \operatorname{EXTEND}\left(q_{\text {rand }}\right)=\text { extended }\right) \text { then }
$$

$$
\text { if }\left(T_{b} \cdot \operatorname{EXTEND}\left(q_{\text {new }}\right)=\text { reached }\right) \text { then }
$$

$$
\text { Return } \operatorname{PATH}\left(T_{a}, T_{b}\right) \text {; }
$$

$$
\operatorname{SWAP}\left(T_{a} T_{b}\right) ;
$$

Basic RRT-Connect

$$
\text { function RRT_CONNECT }\left(q_{\text {init }}, q_{g o a l}\right) \text { : }
$$

$$
T_{a}=q_{\text {infit }} T_{b}=q_{\text {goali }}
$$

$$
\text { for } i=1 \text { to } \mathrm{K} \text { do }
$$

$$
q_{\text {rand }}=\text { RANDOM_CONFIG(); }
$$

$$
\text { if }\left(T_{a} \text { EXTEND }\left(q_{\text {rand }}\right)=\text { extended }\right) \text { then }
$$

Return $\operatorname{PATH}\left(T_{a,} T_{b}\right)$;

Successfully added a node to tree

$$
\text { if }\left(T_{b} \text {. EXTEND }\left(q_{\text {new }}\right)=\text { reached }\right) \text { then }
$$

Successfully connected T_b to q_new

Instead of switching, use T_{a} as smaller tree.

Smoothing the path

Notice that it wasn't the shortest path...

- we're just smoothing, not optimizing

Kinodynamic planning with RRTs

So far, we have assumed that the system has no dynamics

- the system can instantaneously move in any direction in c-space
- but what if that's not true?

Consider the Dubins car:

- c-space: x-y position and velocity, angle
- control forward velocity and steering angle
- plan a path through c-space with the corresponding control signals

$$
x_{t+1}=f\left(x_{t}, u_{t}\right)
$$

where:
$\mathrm{x} _\mathrm{t}-$ state (x / y position and velocity, steering angle)
u_t - control signal (forward velocity, steering angle)

Kinodynamic planning with RRTs

$$
x_{t+1}=f\left(x_{t}, u_{t}\right)
$$

$u^{*}=\arg \min _{u}\left(d\left(x_{\text {rand }}, f\left(x_{\text {near }}, u\right)\right)\right)$

But, what if $x _\{n e a r\} ~ i s n ' t ~ t h e ~ r i g h t ~ n o d e ~ t o ~ e x p a n d ~ ? ? ? ~ ? ~$

So, what do they do?

- Use nearest neighbor anyway
- As long as heuristic is not bad, it helps
(you have already given up completeness and optimality, so what the heck?)
- Nearest neighbor calculations begin to dominate the collision avoidance
- Remember K-D trees

Articulated Robot

Highly Articulated Robot

Hovercraft with 2 Thusters

Out of This World Demo

Left-turn only forward car

Applications of RRTs

Robotics Applications
mobile robotics
manipulation
humanoids
Other Applications
biology (drug design)
manufacturing and virtual prototyping (assembly analysis)
verification and validation
computer animation and real-time graphics
aerospace
RRT extensions
discrete planning (STRIPS and Rubik's cube)
real-time RRTs
anytime RRTs
dynamic domain RRTs
deterministic RRTs
parallel RRTs
hybrid RRTs

