Rapidly-Exploring Random Trees (RRTs)

Robert Platt

Northeastern University

These slides contain material aggregated/developed by Howie Choset and others

Basic RRT Algorithm (no goal)

function RRT (q_{init}):

 $T=q_{init}$ for *i* = 1 to K do: q_{rand} = RANDOM_CONFIG(); T.EXTEND(q_{rand})

Basic RRT Algorithm (no goal)

function RRT (q_{init}):

 $T=q_{init}$ for *i* = 1 to K do: q_{rand} = RANDOM_CONFIG(); T.EXTEND(q_{rand})

Basic RRT Algorithm (no goal)

function RRT (q_{init}) :

 $T=q_{init}$ for i = 1 to K do: $q_{rand} = RANDOM_CONFIG();$ T.EXTEND (q_{rand})

STEP_LENGTH: How far to sample

- 1. Sample just at end point
- 2. Sample all along
- 3. Small Step

Extend returns

- 1. Trapped, cant make it
- 2. Extended, steps toward node
- 3. Reached, connects to node

Basic RRT Algorithm

function RRT (
$$q_{init}, q_{goal}$$
):
 $T=q_{init}$
for $i = 1$ to K do:
if rand01() < 0.1:
 $q_{rand} = q_{goal}$
else
 $q_{rand} = RANDOM_CONFIG();$
T.EXTEND(q_{rand})

STEP_LENGTH: How far to sample

- 1. Sample just at end point
- 2. Sample all along
- 3. Small Step

Extend returns

- 1. Trapped, cant make it
- 2. Extended, steps toward node
- 3. Reached, connects to node

RRT versus a naïve random tree

RRT

Naïve random tree

Growing the naïve random tree:

- 1. pick a node at random
- 2. sample a new node near it
- 3. grow tree from random node to new node

RRTs and Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html

Biases

- Bias toward larger spaces
- Bias toward goal
 - When generating a random sample, with some probability pick the goal instead of a random node when expanding
 - This introduces another parameter
 - 5-10% is probably the right choice

RRT probabilistic completeness

<u>Theorem</u> (LaValle and Kuffner, 2001):

If a path planning problem is feasible, then there exist constants n_0 and a>0, such that:

$$P(\text{a path is found}) \ge 1 - e^{-an}$$

where *n*>n_0 is the number of samples

Notice that this is exactly the same theorem as given for PRMs...

RRT-Connect

A single RRT-Connect iteration...

1) One tree grown using random target

2) New node becomes target for other tree

3) Calculate node "nearest" to target

5) If successful, keep extending branch

5) If successful, keep extending branch

6) Path found if branch reaches target

7) Return path connecting start and goal

Basic RRT-Connect

function RRT_CONNECT (q_{init}, q_{goal}) : $T_a = q_{init}; T_b = q_{goal};$ for i = 1 to K do $q_{rand} = \text{RANDOM}_\text{CONFIG}();$ if $(T_a.\text{EXTEND}(q_{rand}) = \text{extended})$ then if $(T_b.\text{EXTEND}(q_{new}) = \text{reached})$ then Return PATH $(T_{a}, T_b);$ SWAP $(T_a, T_b);$

Basic RRT-Connect

Instead of switching, use T_a as smaller tree.

Notice that it wasn't the shortest path.. – we're just smoothing, not optimizing

Kinodynamic planning with RRTs

So far, we have assumed that the system has no dynamics

- the system can instantaneously move in any direction in c-space
- but what if that's not true?

Consider the Dubins car:

- c-space: x-y position and velocity, angle
- control forward velocity and steering angle
- plan a path through c-space with the corresponding control signals

$$x_{t+1} = f(x_t, u_t)$$

where:

 $x_t - state$ (x/y position and velocity, steering angle) u_t - control signal (forward velocity, steering angle)

Kinodynamic planning with RRTs

$$x_{t+1} = f(x_t, u_t)$$

$$u^* = \arg\min_{u}(d(x_{rand}, f(x_{near}, u)))$$

But, what if x_{near} isn't the right node to expand ???

So, what do they do?

- Use nearest neighbor anyway
- As long as heuristic is not bad, it helps

(you have already given up completeness and optimality, so what the heck?)

- Nearest neighbor calculations begin to dominate the collision avoidance
- Remember K-D trees

Articulated Robot

Highly Articulated Robot

Hovercraft with 2 Thusters

Out of This World Demo

Left-turn only forward car

Applications of RRTs

Robotics Applications mobile robotics manipulation humanoids **Other Applications** biology (drug design) manufacturing and virtual prototyping (assembly analysis) verification and validation computer animation and real-time graphics aerospace **RRT** extensions discrete planning (STRIPS and Rubik's cube) real-time RRTs anytime RRTs dynamic domain RRTs deterministic RRTs parallel RRTs hybrid RRTs