Kinematic Redundancy

- A manipulator may have more DOFs than are necessary to control a desired variable
- What do you do w/ the extra DOFs?
- However, even if the manipulator has "enough" DOFs, it may still be unable to control some variables in some configurations...

Jacobian Range Space

Before we think about redundancy, let's look at the range space of the Jacobian transform:

The velocity Jacobian maps joint velocities onto end effector velocities: $v=J_{v}(q) \dot{q}$

$$
J_{v}(q): Q \rightarrow V
$$

Space of joint velocities

- This is the domain of J: $D\left(J_{v}\right)$

Space of end effector velocities

- This is the range space of $J: R\left(J_{v}\right)$

Jacobian Range Space

$$
J_{v}(q): Q \rightarrow V
$$

In some configurations, the range space of the Jacobian may not span the entire space of the variable to be controlled:

$$
\exists v \in V, v \notin R\left(J_{v}(q)\right)
$$

$R\left(J_{v}(q)\right)$ spans V if $\forall v \in V, v \in R\left(J_{v}(q)\right)$

Example: a and b span this two dimensional space:

Jacobian Range Space

This is the case in the manipulator to the right:

- In this configuration, the Jacobian does not span the y direction (or the z direction)

$$
y \in V, y \notin R\left(J_{v}(q)\right)
$$

Jacobian Range Space

Let's calculate the velocity Jacobian:

Jacobian Singularities

In singular configurations:

- $J_{v}(q)$ does not span the space of Cartesian velocities
- $J_{v}(q)$ loses rank

Test for kinematic singularity:

- If $\operatorname{det}\left[J(q) J(q)^{T}\right]$ is zero, then manipulator is in a singular configuration

$$
\begin{aligned}
& \text { Example: } \\
& \operatorname{det}\left[J(q) J(q)^{T}\right]=\operatorname{det}\left[\begin{array}{ccc}
-l_{1}-l_{2}+l_{3} & -l_{2}+l_{3} & l_{3} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{cc}
-l_{1}-l_{2}+l_{3} & 0 \\
-l_{2}+l_{3} & 0 \\
l_{3} & 0
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
\text { something } & 0 \\
0 & 0
\end{array}\right] \\
&=0
\end{aligned}
$$

Jacobian Singularities: Example

The four singularities of the three-link planar arm:

Jacobian Singularities and Cartesian Control

Cartesian control involves calculating the inverse or pseudoinverse:

$$
J^{\#}=J^{T}\left(J J^{T}\right)^{-1}
$$

However, in singular configurations, the pseudoinverse (or inverse) does not exist because $\left(J J^{T}\right)^{-1}$ is undefined.

As you approach a singular configuration, joint velocities in the singular direction calculated by the pseudoinverse get very large:

$$
\dot{q}=J^{\#} \dot{x}_{s}=J^{T}\left(J J^{T}\right)^{-1} \dot{x}_{s}=\mathrm{big}
$$

In Jacobian transpose control, joint velocities in the singular direction (i.e. the gradient) go to zero:

$$
\dot{q}=J^{T} \dot{x}_{s}=0 \quad \text { Where } \dot{x}_{s} \text { is a singular direction. }
$$

Jacobian Singularities and Cartesian Control

- So, singularities are mostly a problem for Jacobian pseudoinverse control where the pseudoinverse "blows up".
- Not much of a problem for transpose control
- The worst that can happen is that the manipulator gets "stuck" in a singular configuration because the direction of the goal is in a singular direction.
- This "stuck" configuration is unstable - any motion away from the singular configuration will allow the manipulator to continue on its way.

Jacobian Singularities and Cartesian Control

One way to get the "best of both worlds" is to use the "dampled least squares inverse" - aka the singularity robust (SR) inverse:

$$
J^{*}=J^{T}\left(J J^{T}+k^{2} I\right)^{-1}
$$

- Because of the additional term inside the inversion, the SR inverse does not blow up.
- In regions near a singularity, the SR inverse trades off exact trajectory following for minimal joint velocities.

BTW, another way to handle singularities is simply to avoid them - this method is preferred by many

- More on this in a bit...

Kinematic redundancy

A general-purpose robot arm frequently has more DOFs than are strictly necessary to perform a given function

- in order to independently control the position of a planar manipulator end effector, only two DOFs are strictly necessary
- If the manipulator has three DOFs, then it is redundant w.r.t. the task of controlling two dimensional position.
- In order to independently control end effector position in 3-space, you need at least 3 DOFs
- In order to independently control end effector position and orientation, at least 6 DOFs are needed (they have to be configured right, too...)

Kinematic redundancy

The local redundancy of an arm can be understood in terms of the local Jacobian

- The manipulator controls a number of Cartesian DOFs equal to the number of independent rows in the Jacobian

$$
J=\left[\begin{array}{lll}
j_{11} & j_{12} & j_{13} \\
j_{21} & j_{22} & j_{23}
\end{array}\right] \curvearrowright \begin{aligned}
& \text { Since there are two independent } \\
& \\
& \\
& \\
& \text { rows, you can control two } \\
& \text { Cartesian DOFs independently } \\
& (m=2)
\end{aligned}
$$

You use three joints to control two Cartesian DOFs ($n=3$)

Since the number of independent Cartesian directions is less than the number of joints, $(m<n)$, this manipulator is redundant w.r.t. the task of controlling those Cartesian directions.

Kinematic redundancy

What does this redundant space look like?

- At first glance, you might think that it's linear because the Jacobian is linear
- But, the Jacobian is only locally linear

The dimension of the redundant space is the number of joints - the number of independent Cartesian DOFs: $n-m$.

- For the three link planar arm, the redundant space is a set of one dimensional curves traced through the three dimensional joint space.
- Each curve corresponds to the set of joint configurations that place the end effector in the same position.

Redundant manifolds in joint space

Kinematic redundancy

Joint velocities in redundant directions causes no motion at the end effector

- These are internal motions of the manipulator.

Redundant joint velocities satisfy this equation: $0=J(q) \dot{q}$ \uparrow
the null space of $J(q)$

$$
N(J(q))=\{\stackrel{\downarrow}{\dot{q} \in \dot{Q}: 0=J(q) \dot{q}\}}
$$

Compare to the range space of $J(q)$:

$$
R(J(q))=\{\dot{x} \in \dot{X}: \exists \dot{q} \in \dot{Q}, \dot{x}=J(q) \dot{q}\}
$$

Redundant manifolds in joint space

Null space and Range space

Joint space
$Q \subseteq S O(n-1)$

Null space

- Motions in the null space are internal motions

$$
N(J(q))=\{\dot{q} \in \dot{Q}: 0=J(q) \dot{q}\}
$$

Cartesian space
$X \subseteq R^{m}$

You can't generate these motions

$$
R(J(q))=\{\dot{x} \in \dot{X}: \exists \dot{q} \in \dot{Q}, \dot{x}=J(q) \dot{q}\}
$$

Range space

Doing Things in the Redundant Joint Space

Motions in the redundant space do not affect the position of the end effector.

- Since they don't change end effector position, is there something we would like to do in this space?

- Optimize kinematic manipulability?
- Stay away from obstacles?
- Something else?

Doing Things in the Redundant Joint Space

$$
\dot{q}=J^{\#} \dot{\chi}+\underbrace{\left(I-J^{\#} J\right.}_{\uparrow}) \dot{q}_{0}
$$

Null space projection matrix: $I-J^{\#} J$

- This matrix projects an arbitrary vector into the null space of J :

Zero end-effector velocities

$$
0=J\left(I-J^{\#} J\right) \dot{q}_{\text {anything }} \boldsymbol{\Delta}
$$

- This makes it easy to do things in the redundant space - just calculate what you would like to do and project it into the null space.

Doing Things in the Redundant Joint Space

Assume that you are given a joint velocity, \dot{q}_{0}, you would like to achieve while also achieving a desired end effector twist, \dot{x}_{d}

- Required objective: \dot{x}_{d}
- Desired objective: $\dot{\boldsymbol{q}}_{0}$

$$
\begin{aligned}
& f(\dot{q})=\left(\dot{q}-\dot{q}_{0}\right)^{T}\left(\dot{q}-\dot{q}_{0}\right) \\
& g(\dot{q})=J \dot{q}-\dot{x}
\end{aligned}
$$

Minimize $f(z)$ subject to $g(z)=0$:
Use lagrange multiplier method: $\nabla_{z} f(z)=\lambda \nabla_{z} g(z)$

Doing Things in the Redundant Joint Space

$$
\begin{aligned}
& \nabla f=\left(\dot{q}-\dot{q}_{0}\right)^{T} \\
& \nabla g=J \\
& \nabla_{z} f(z)=\lambda \nabla_{z} g(z) \\
& \left(\dot{q}-\dot{q}_{0}\right)^{T}=\lambda^{T} J \\
& \dot{q}=J^{T} \lambda-\dot{q}_{0} \\
& J\left(J^{T} \lambda-\dot{q}_{0}\right)=\dot{x} \\
& \lambda=\left(J J^{T}\right)^{-1}\left(\dot{x}-J \dot{q}_{0}\right) \\
& \dot{q}=J^{T}\left(J J^{T}\right)^{-1}\left(\dot{x}-J \dot{q}_{0}\right)+\dot{q}_{0} \\
& \dot{q}=J^{\#} \dot{x}+\left(I-J^{\#} J \dot{q}_{0}\right.
\end{aligned}
$$

Things You Might do in the Null Space Avoid kinematic singularities:
 1. Calculate the gradient of the manipulability measure: $\quad \dot{q}_{0}=\nabla \sqrt{\operatorname{det}\left(J J^{T}\right)}$
 2. Project into null space: $\dot{q}=J^{\#} \dot{x}+\left(I-J^{\#} J\right) \dot{q}_{0}$

Avoid joint limits:

1. Calculate a gradient of the squared distance from a joint limit:

$$
\begin{aligned}
& \dot{q}_{0}=\alpha\left(q_{m}-q\right) \\
& \dot{q}=J^{\#} \dot{x}+\left(I-J^{\#} J\right) \dot{q}_{0}
\end{aligned}
$$

2. Project into null space:

- where q_{m} is the joint configuration at the center of the joints
- and q is the current joint position

Things You Might do in the Null Space

Avoid kinematic obstacles:

1. Consider a set of control points (nodes) on the manipulator: $\quad\left\{x_{1}, x_{2}, x_{3}\right\}$
2. Move all nodes away from the object:

$$
\nabla x_{i}=x_{i}-x_{\text {obstacle }}
$$

3. Project desired motion into joint space:

$$
\dot{q}_{0}=\sum_{i \in \text { nodes }} J_{i}{ }^{T} \nabla x_{i}
$$

4. Project into null space:

$$
\dot{q}=J^{\#} \dot{x}+\left(I-J^{\#} J\right) \dot{q}_{0}
$$

Manipulability Ellipsoid

Can we characterize how close we are to a singularity?
Yes - imagine the possible instantaneous motions are described by an ellipsoid in Cartesian space.

Manipulability Ellipsoid

The manipulability ellipsoid is an ellipse in Cartesian space corresponding to the twists that unit joint velocities can generate:
$\dot{q}^{T} \dot{q}=1 \longleftarrow$ A unit sphere in joint velocity space
$\left(J^{\#} \dot{X}\right)^{T} J^{\#} \dot{X}=1 \longleftarrow$ Project the sphere into Cartesian space
$\dot{x}^{T}\left(J^{T}\left(J J^{T}\right)^{-1}\right)^{T} J^{T}\left(J J^{T}\right)^{-1} \dot{x}=1$
$\dot{x}^{T}\left(J J^{T}\right)^{-T} J J^{T}\left(J J^{T}\right)^{-1} \dot{X}=1$
$\dot{x}^{T}\left(J J^{T}\right)^{-1} \dot{x}=1 \longleftarrow$ The space of feasible Cartesian velocities

Manipulability Ellipsoid

You can calculate the directions and magnitudes of the principle axes of the ellipsoid by taking the eigenvalues and eigenvectors of $J J^{T}$

- The lengths of the axes are the square roots of the eigenvalues

Yoshikawa's manipulability measure: $\sqrt{\operatorname{det}\left(J J^{T}\right)}$

- You try to maximize this measure
- Maximized in isotropic configurations
- This measures the volume of the ellipsoid

Manipulability Ellipsoid

Another characterization of the manipulability ellipsoid: the ratio of the largest eigenvalue to the smallest eigenvalue:

- Let λ_{1} be the largest eigenvalue and let λ_{n} be the smallest.
- Then the condition number of the
 ellipsoid is:

$$
k=\frac{\sqrt{\lambda_{1}}}{\sqrt{\lambda_{n}}}
$$

- The closer to one the condition number, the more isotropic the ellispoid is.

Manipulability Ellipsoid

Isotropic manipulability ellipsoid

NOT isotropic manipulability ellipsoid

Force Manipulability Ellipsoid

You can also calculate a manipulability ellipsoid for force:
$\tau^{T} \tau=1 \longleftarrow$ A unit sphere in the space of joint torques
$\tau=J^{T} F$
$\left(J^{T} F\right)^{T} J^{T} F=1$
$F^{T} J J^{T} F=1 \longleftarrow$ The space of feasible Cartesian wrenches

Manipulability Ellipsoid

Principle axes of the force manipulability ellipsoid: the eigenvalues and eigenvectors of: $\left(J J^{T}\right)^{-1}$

- $\left(J J^{T}\right)^{-1}$ has the same eigenvectors as $J J^{T}: v_{i}^{v}=v_{i}^{f}$
- But, the eigenvalues of the force and velocity ellipsoids are reciprocals:

$$
\lambda_{i}^{f}=\frac{1}{\lambda_{i}^{v}}
$$

- Therefore, the shortest principle axes of the velocity ellipsoid are the longest principle axes of the force ellipsoid and vice versa...

Velocity and force manipulability are orthogonal!

- Your max velocity is greatest in the directions where you can only apply the smallest forces

Manipulability Ellipsoid: Example

Solve for the principle axes of the manipulability ellipsoid for the planar two link manipulator with unit length links at

$$
q=\binom{0}{\frac{\pi}{4}}
$$

$J(q)=\left[\begin{array}{cc}-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} \\ l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}\end{array}\right]$
$J(q)=\left[\begin{array}{cc}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 1+\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$

$J(q) J(q)^{T}=\left[\begin{array}{cc}1-\lambda & -1+\frac{1}{\sqrt{2}} \\ -1+\frac{1}{\sqrt{2}} & 2+\sqrt{2}-\lambda\end{array}\right]$
Principle axes: $\quad \sqrt{\lambda_{1}} v_{1}=\binom{-0.3029}{-0.1568}$
$\sqrt{\lambda_{2}} v_{2}=\binom{-0.9530}{1.8411}$

Supplementary

Null space and Range space

Degree of manipulability: $\operatorname{dim}(R(J(q)))$
Degree of redundancy: $\operatorname{dim}(N(J(q)))$

$$
\operatorname{dim}(N(J(q)))+\operatorname{dim}(R(J(q)))=\text { total DOF of manipulator }
$$

Null space and Range space

As the manipulator moves to new configurations, the degree of manipulability may temporarily decrease - these are the singular configurations.

- There is a corresponding increase in degree of redundancy.

$$
\dot{x}=J(q) \dot{q}
$$

Null space and Range space

$$
\dot{x}=J(q) \dot{q}
$$

Remember the Jacobian's application to statics: $\tau=J(q)^{T} F$

$$
\begin{aligned}
& R(J(q))=N^{\perp}\left(J(q)^{T}\right) \\
& N(J(q))=R^{\perp}\left(J(q)^{T}\right)
\end{aligned}
$$

Null space and Range space in the Force Domain

Null space and Range space in the Force Domain

- A Cartesian force cannot generate joint torques in the joint velocity null space.

