
Kinematic Redundancy

• A manipulator may have more DOFs than 
are necessary to control a desired variable

• What do you do w/ the extra DOFs?

• However, even if the manipulator has 
“enough” DOFs, it may still be unable to 
control some variables in some 
configurations…



Jacobian Range Space

Before we think about redundancy, let’s look at the 
range space of the Jacobian transform:

The velocity Jacobian maps joint velocities onto end 
effector velocities:

Space of joint velocities

• This is the domain of 
J:

Space of end effector 
velocities

• This is the range 
space of J:  vJR

 vJD

 qqJv v 

  VQqJv :



In some configurations, the range space of the 
Jacobian may not span the entire space of the 
variable to be controlled:

  VQqJv :

  qJvVv vR ,

spans       if  qJvR V   qJvVv vR ,

Example: a and b span this two dimensional space:

a

b

Jacobian Range Space



This is the case in the manipulator to the right:

• In this configuration, the Jacobian does not span 
the y direction (or the z direction)

  qJyVy vR ,
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Jacobian Range Space



Let’s calculate the velocity Jacobian:
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Joint configuration of manipulator:
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 qqJy v There is no joint velocity,    , that will produce a y velocity,q

Therefore, you’re in a singularity.

Jacobian Range Space



Jacobian Singularities
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In singular configurations:

•           does not span the space of Cartesian 
velocities

•           loses rank

)(qJ v

)(qJ v

Test for kinematic singularity:

• If                                is zero, then manipulator is in 
a singular configuration
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Jacobian Singularities: Example
The four singularities of the three-link planar arm:



Jacobian Singularities and Cartesian Control
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Cartesian control involves calculating the inverse or 
pseudoinverse:

  1#  TT JJJJ

However, in singular configurations, the 
pseudoinverse (or inverse) does not exist 
because                is undefined.  1TJJ

As you approach a singular configuration, joint 
velocities in the singular direction calculated by 
the pseudoinverse get very large:

  big
1#  

s
TT

s xJJJxJq 

In Jacobian transpose control, joint velocities in the 
singular direction (i.e. the gradient) go to zero:

0 s
T xJq  Where      is a singular direction.sx



Jacobian Singularities and Cartesian Control
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• So, singularities are mostly a problem for Jacobian 
pseudoinverse control where the pseudoinverse 
“blows up”.

• Not much of a problem for transpose control

• The worst that can happen is that the 
manipulator gets “stuck” in a singular 
configuration because the direction of the goal 
is in a singular direction.

• This “stuck” configuration is unstable – any 
motion away from the singular configuration 
will allow the manipulator to continue on its 
way.



Jacobian Singularities and Cartesian Control
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One way to get the “best of both worlds” is to use the 
“dampled least squares inverse” – aka the 
singularity robust (SR) inverse:

  12*  IkJJJJ TT

• Because of the additional term inside the inversion, 
the SR inverse does not blow up.

• In regions near a singularity, the SR inverse trades 
off exact trajectory following for minimal joint 
velocities.

BTW, another way to handle singularities is simply to 
avoid them – this method is preferred by many

• More on this in a bit…



Kinematic redundancy
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A general-purpose robot arm frequently has 
more DOFs than are strictly necessary to 
perform a given function

• in order to independently control the position 
of a planar manipulator end effector, only 
two DOFs are strictly necessary

• If the manipulator has three DOFs, then 
it is redundant w.r.t. the task of 
controlling two dimensional position.

• In order to independently control end 
effector position in 3-space, you need at 
least 3 DOFs

• In order to independently control end 
effector position and orientation, at least 6 
DOFs are needed (they have to be 
configured right, too…)
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Kinematic redundancy
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The local redundancy of an arm can be 
understood in terms of the local Jacobian

• The manipulator controls a number of 
Cartesian DOFs equal to the number of 
independent rows in the Jacobian

Since there are two independent 
rows, you can control two 
Cartesian DOFs independently 
(m=2)

You use three joints to control two 
Cartesian DOFs (n=3)

Since the number of independent Cartesian directions is less than the 
number of joints, (m<n), this manipulator is redundant w.r.t. the task of 
controlling those Cartesian directions.



Kinematic redundancy
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What does this redundant space look like?

• At first glance, you might think that it’s 
linear because the Jacobian is linear

• But, the Jacobian is only locally linear

The dimension of the redundant space is the 
number of joints – the number of independent 
Cartesian DOFs: n-m.

• For the three link planar arm, the redundant 
space is a set of one dimensional curves 
traced through the three dimensional joint 
space.

• Each curve corresponds to the set of joint 
configurations that place the end effector in 
the same position. Redundant manifolds in 

joint space



Kinematic redundancy
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Joint velocities in redundant directions 
causes no motion at the end effector

• These are internal motions of the 
manipulator.

Redundant manifolds in 
joint space

qqJ )(0 
Redundant joint velocities satisfy this 

equation:

the null space of )(qJ

   qqJQqqJN  )(0:)( 

Compare to the range space of            :)(qJ

   qqJxQqXxqJR  )(,:)( 



Null space and Range space

 )(qJN
 )(qJR

 1 nSOQ mRX 

Range space

Null space

• Motions in the null space 
are internal motions

Joint space Cartesian space

   qqJQqqJN  )(0:)( 

   qqJxQqXxqJR  )(,:)( 

qqJx  )(

You can’t generate 
these motions



Motions in the redundant space do not affect the 
position of the end effector.

• Since they don’t change end effector 
position, is there something we would like to 
do in this space?

• Optimize kinematic manipulability?

• Stay away from obstacles?

• Something else?
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Doing Things in the Redundant Joint Space
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Doing Things in the Redundant Joint Space

  0
## qJJIxJq  

Null space projection matrix:

• This matrix projects an arbitrary vector into the null 
space of J:

• This makes it easy to do things in the redundant 
space – just calculate what you would like to do and 
project it into the null space.

JJI #

Zero end-effector velocities



Assume that you are given a joint velocity,     , 
you would like to achieve while also 
achieving a desired end effector twist, 

• Required objective:

• Desired objective: 
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Doing Things in the Redundant Joint Space

   00)( qqqqqf T  

dx

Use lagrange multiplier method: )()( zgzf zz  

Minimize          subject to                 :0)( zg)(zf

0q

dx

0q

xqJqg  )(
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Doing Things in the Redundant Joint Space

 Tqqf 0 

Jg 
)()( zgzf zz  

  Jqq TT  0

0qJq T   

  xqJJ T   0
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1
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  0
## qJJIxJq  
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Things You Might do in the Null Space

Avoid kinematic singularities:

1. Calculate the gradient of the 
manipulability measure:

2. Project into null space:

 TJJq det0 

  0
## qJJIxJq  

Avoid joint limits:

1. Calculate a gradient of the 
squared distance from a joint 
limit:

2. Project into null space:   0
## qJJIxJq  

• where       is the joint configuration at the center of the joints

• and       is the current joint position

 qqq m  0

mq

q



Things You Might do in the Null Space

Avoid kinematic obstacles:

1. Consider a set of control points 
(nodes) on the manipulator:

2. Move all nodes away from the 
object:

3. Project desired motion into 
joint space:

4. Project into null space:   0
## qJJIxJq  

obstacleii xxx  z0

1x
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 321 ,, xxx


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nodesi

i
T
i xJq0

obstacle

dx



Yes – imagine the possible instantaneous motions are described by 
an ellipsoid in Cartesian space.

Can we characterize how close we are to a singularity?

Manipulability Ellipsoid

Can’t move much this way

Can move a lot this way



The manipulability ellipsoid is an ellipse in 
Cartesian space corresponding to the twists 
that unit joint velocities can generate:

Manipulability Ellipsoid

1qqT 

  1## xJxJ
T



A unit sphere in joint velocity space

     1
11 
xJJJJJJx TT

T
TTT 

    1
1 
xJJJJJJx TTTTT 

  1
1 
xJJx TT 

Project the sphere into 
Cartesian space

The space of feasible 
Cartesian velocities



You can calculate the directions and magnitudes 
of the principle axes of the ellipsoid by taking 
the eigenvalues and eigenvectors of

• The lengths of the axes are the square roots 
of the eigenvalues

Manipulability Ellipsoid

TJJ

1v
2v

1
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Yoshikawa’s manipulability measure:

• You try to maximize this measure

• Maximized in isotropic configurations

• This measures the volume of the ellipsoid

 TJJdet



Another characterization of the 
manipulability ellipsoid: the ratio of the 
largest eigenvalue to the smallest 
eigenvalue:

• Let      be the largest eigenvalue and let 
be the smallest.

• Then the condition number of the 
ellipsoid is:

• The closer to one the condition number, 
the more isotropic the ellispoid is.

Manipulability Ellipsoid
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Manipulability Ellipsoid

Isotropic manipulability 
ellipsoid

NOT isotropic 
manipulability ellipsoid



1 T

You can also calculate a manipulability ellipsoid 
for force:

  1FJFJ TTT

1FJJF TT

Force Manipulability Ellipsoid

FJ T
A unit sphere in the space of joint torques

The space of feasible Cartesian wrenches



Principle axes of the force manipulability ellipsoid: the 
eigenvalues and eigenvectors of:

•             has the same eigenvectors as        :

• But, the eigenvalues of the force and velocity ellipsoids 
are reciprocals:

• Therefore, the shortest principle axes of the velocity 
ellipsoid are the longest principle axes of the force 
ellipsoid and vice versa…

Manipulability Ellipsoid

  1TJJ
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Velocity and force manipulability are orthogonal!

Velocity ellipsoid

Force ellipsoid

This is known as force/velocity duality

• You can apply the largest forces in the same 
directions that your max velocity is smallest

• Your max velocity is greatest in the directions where 
you can only apply the smallest forces



Manipulability Ellipsoid: Example

Solve for the principle axes of the manipulability 
ellipsoid for the planar two link manipulator with unit 
length links at
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Supplementary



Null space and Range space

 )(qJN
 )(qJR

qqJx  )(

Degree of manipulability:

      rmanipulato of DOF total)(dim)(dim  qJRqJN

  )(dim qJR

Degree of redundancy:   )(dim qJN



 )(qJN
 )(qJR

qqJx  )(

As the manipulator moves to new configurations, the degree of 
manipulability may temporarily decrease – these are the 
singular configurations.

• There is a corresponding increase in degree of redundancy.

Null space and Range space



 )(qJN
 )(qJR

qqJx  )(

Null space and Range space

   TqJNqJR )()( 
   TqJRqJN )()( 

FqJ T)(Remember the Jacobian’s application to statics:



 )(qJN
 )(qJR

qqJx  )(

Null space and Range space in the Force Domain

 TqJR )(
 TqJN )(

FqJ T)(

 )(qJR )(qJN

 TqJN )( TqJR )(



Null space and Range space in the Force Domain

 TqJR )(
 TqJN )(

FqJ T)(

 )(qJR )(qJN

   TqJNqJR )()( 
   TqJRqJN )()( 

• A Cartesian force cannot generate joint torques in the joint 
velocity null space.

• …
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