
kd-Trees
CMSC 420

kd-Trees

• Invented in 1970s by Jon Bentley

• Name originally meant “3d-trees, 4d-trees, etc”
where k was the # of dimensions

• Now, people say “kd-tree of dimension d”

• Idea: Each level of the tree compares against 1
dimension.

• Let’s us have only two children at each node
(instead of 2d)

kd-trees

• Each level has a “cutting
dimension”

• Cycle through the dimensions
as you walk down the tree.

• Each node contains a point
P = (x,y)

• To find (x’,y’) you only
compare coordinate from the
cutting dimension

- e.g. if cutting dimension is x,
then you ask: is x’ < x?

x

y

x

y

x

10,12

35,45

kd-tree example

x

y

x

y

5,25

50,30

70,70

30,40

(30,40)

(5,25)

(70,70)

(10,12)

(50,30)

(35,45)

insert: (30,40), (5,25), (10,12), (70,70), (50,30), (35,45)

insert(Point x, KDNode t, int cd) {
 if t == null
 t = new KDNode(x)
 else if (x == t.data)
 // error! duplicate
 else if (x[cd] < t.data[cd])
 t.left = insert(x, t.left, (cd+1) % DIM)
 else
 t.right = insert(x, t.right, (cd+1) % DIM)
 return t
}

Insert Code

FindMin in kd-trees

• FindMin(d): find the point with the smallest value in
the dth dimension.

• Recursively traverse the tree

• If cutdim(current_node) = d, then the minimum
can’t be in the right subtree, so recurse on just the
left subtree

- if no left subtree, then current node is the min for tree
rooted at this node.

• If cutdim(current_node) ≠ d, then minimum could
be in either subtree, so recurse on both subtrees.

- (unlike in 1-d structures, often have to explore several
paths down the tree)

FindMin

60,80

70,70

50,501,10

35,90

x

y

x

y

10,30

25,40

51,75

(51,75)

55,1(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)
(35,90)

FindMin(x-dimension):

(50,50)

FindMin

60,80

70,70

50,501,10

35,90

x

y

x

y

10,30

25,40

51,75

(51,75)

55,1(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)
(35,90)

FindMin(y-dimension):

1,10

55,1
(50,50)

FindMin

60,80

70,70

50,501,10

35,90

x

y

x

y

10,30

25,40

51,75

(51,75)

55,1(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)

(50,50)

(35,90)

FindMin(y-dimension): space searched

Point findmin(Node T, int dim, int cd):
 // empty tree
 if T == NULL: return NULL

 // T splits on the dimension we’re searching
 // => only visit left subtree
 if cd == dim:
 if t.left == NULL: return t.data
 else return findmin(T.left, dim, (cd+1)%DIM)

 // T splits on a different dimension
 // => have to search both subtrees
 else:
 return minimum(
 findmin(T.left, dim, (cd+1)%DIM),
 findmin(T.right, dim, (cd+1)%DIM)
 T.data
)

FindMin Code

Delete in kd-trees

Q P

A

Want to delete node A.
Assume cutting

dimension of A is cd

In BST, we’d
findmin(A.right).

Here, we have to
findmin(A.right, cd)

cd

cd B
Everything in Q has

cd-coord < B, and
everything in P has cd-

coord ≥ B

Delete in kd-trees --- No Right Subtree

• What is right subtree is
empty?

• Possible idea: Find the max
in the left subtree?

- Why might this not
work?

• Suppose I findmax(T.left)
and get point (a,b):

Q

(x,y)x

cd (a,b)
(a,c)

It’s possible that T.left
contains another point
with x = a.

Now, our equal
coordinate invariant is
violated!

No right subtree --- Solution

• Swap the subtrees of node to
be deleted

• B = findmin(T.left)

• Replace deleted node by B

Q

(x,y)x

cd (a,b)

(a,c)

Now, if there is another
point with x=a, it
appears in the right
subtree, where it should

Point delete(Point x, Node T, int cd):
 if T == NULL: error point not found!
 next_cd = (cd+1)%DIM

 // This is the point to delete:
 if x = T.data:
 // use min(cd) from right subtree:
 if t.right != NULL:
 t.data = findmin(T.right, cd, next_cd)
 t.right = delete(t.data, t.right, next_cd)
 // swap subtrees and use min(cd) from new right:
 else if T.left != NULL:
 t.data = findmin(T.left, cd, next_cd)
 t.right = delete(t.data, t.left, next_cd)
 else
 t = null // we’re a leaf: just remove

 // this is not the point, so search for it:
 else if x[cd] < t.data[cd]:
 t.left = delete(x, t.left, next_cd)
 else
 t.right = delete(x, t.right, next_cd)

 return t

Nearest Neighbor Searching in kd-trees

• Nearest Neighbor Queries are very common: given a point Q find the
point P in the data set that is closest to Q.

• Doesn’t work: find cell that would contain Q and return the point it
contains.

- Reason: the nearest point to P in space may be far from P in the
tree:

- E.g. NN(52,52):

60,80

70,70

50,501,10

35,9010,30

25,40

51,75

55,1

(51,75)

(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)(35,90)

(50,50)

kd-Trees Nearest Neighbor

• Idea: traverse the whole tree, BUT make two
modifications to prune to search space:

1. Keep variable of closest point C found so far.
Prune subtrees once their bounding boxes say
that they can’t contain any point closer than C

2. Search the subtrees in order that maximizes the
chance for pruning

Nearest Neighbor: Ideas, continued

dQuery
Point Q

TBounding box
of subtree

rooted at T

If d > dist(C, Q), then no
point in BB(T) can be
closer to Q than C.
Hence, no reason to search
subtree rooted at T.

Recurse, but start with the subtree “closer” to Q:
First search the subtree that would contain Q if we were
inserting Q below T.

Update the best point so far, if T is better:
if dist(C, Q) > dist(T.data, Q), C := T.data

Nearest Neighbor, Code

def NN(Point Q, kdTree T, int cd, Rect BB):

 // if this bounding box is too far, do nothing
 if T == NULL or distance(Q, BB) > best_dist: return

 // if this point is better than the best:
 dist = distance(Q, T.data)
 if dist < best_dist:
 best = T.data
 best_dist = dist
 // visit subtrees is most promising order:
 if Q[cd] < T.data[cd]:
 NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))
 NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))
 else:
 NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))
 NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))

Following Dave Mount’s Notes (page 77)

best, best_dist are global var
(can also pass into function calls)

Nearest Neighbor Facts

• Might have to search close to the whole tree in the
worst case. [O(n)]

• In practice, runtime is closer to:
- O(2d + log n)
- log n to find cells “near” the query point
- 2d to search around cells in that neighborhood

• Three important concepts that reoccur in range /
nearest neighbor searching:
- storing partial results: keep best so far, and update
- pruning: reduce search space by eliminating irrelevant trees.
- traversal order: visit the most promising subtree first.

