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kd-Trees

• Invented in 1970s by Jon Bentley

• Name originally meant “3d-trees, 4d-trees, etc” 
where k was the # of dimensions

• Now, people say “kd-tree of dimension d”

• Idea: Each level of the tree compares against 1 
dimension.

• Let’s us have only two children at each node 
(instead of 2d)



kd-trees

• Each level has a “cutting 
dimension”

• Cycle through the dimensions 
as you walk down the tree.

• Each node contains a point 
P = (x,y)

• To find (x’,y’) you only 
compare coordinate from the 
cutting dimension

- e.g. if cutting dimension is x, 
then you ask: is x’ < x?
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insert: (30,40), (5,25), (10,12), (70,70), (50,30), (35,45)



insert(Point x, KDNode t, int cd) {
   if t == null
      t = new KDNode(x)
   else if (x == t.data)
      // error! duplicate
   else if (x[cd] < t.data[cd])
      t.left = insert(x, t.left, (cd+1) % DIM)
   else
      t.right = insert(x, t.right, (cd+1) % DIM)
   return t
}

Insert Code



FindMin in kd-trees

• FindMin(d): find the point with the smallest value in 
the dth dimension.

• Recursively traverse the tree

• If cutdim(current_node) = d, then the minimum 
can’t be in the right subtree, so recurse on just the 
left subtree 

- if no left subtree, then current node is the min for tree 
rooted at this node.

• If cutdim(current_node) ≠ d, then minimum could 
be in either subtree, so recurse on both subtrees.

- (unlike in 1-d structures, often have to explore several 
paths down the tree)



FindMin
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FindMin(x-dimension):

(50,50)
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FindMin
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FindMin(y-dimension): space searched



Point findmin(Node T, int dim, int cd):
   // empty tree
   if T == NULL: return NULL

   // T splits on the dimension we’re searching
   // => only visit left subtree
   if cd == dim:
      if t.left == NULL: return t.data
      else return findmin(T.left, dim, (cd+1)%DIM)

   // T splits on a different dimension
   // => have to search both subtrees
   else:
      return minimum(
         findmin(T.left, dim, (cd+1)%DIM),
         findmin(T.right, dim, (cd+1)%DIM)
         T.data
      )

FindMin Code



Delete in kd-trees

Q P

A

Want to delete node A. 
Assume cutting 

dimension of A is cd

In BST, we’d 
findmin(A.right).

Here, we have to 
findmin(A.right, cd)

cd

cd B
Everything in Q has 

cd-coord < B, and 
everything in P has cd-

coord ≥ B 



Delete in kd-trees --- No Right Subtree

• What is right subtree is 
empty?

• Possible idea: Find the max 
in the left subtree?

- Why might this not 
work?

• Suppose I findmax(T.left) 
and get point (a,b):

Q

(x,y)x

cd (a,b)
(a,c)

It’s possible that T.left 
contains another point 
with x = a. 

Now, our equal 
coordinate invariant is 
violated!



No right subtree --- Solution

• Swap the subtrees of node to 
be deleted

• B = findmin(T.left)

• Replace deleted node by B

Q
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cd (a,b)

(a,c)

Now, if there is another 
point with x=a, it 
appears in the right 
subtree, where it should



Point delete(Point x, Node T, int cd):
   if T == NULL: error point not found!
   next_cd = (cd+1)%DIM

   // This is the point to delete:
   if x = T.data:
      // use min(cd) from right subtree:
      if t.right != NULL:
         t.data = findmin(T.right, cd, next_cd)
         t.right = delete(t.data, t.right, next_cd)
      // swap subtrees and use min(cd) from new right:
      else if T.left != NULL:
         t.data = findmin(T.left, cd, next_cd)
         t.right = delete(t.data, t.left, next_cd)
      else
         t = null   // we’re a leaf: just remove

   // this is not the point, so search for it:
   else if x[cd] < t.data[cd]:
      t.left = delete(x, t.left, next_cd)
   else
      t.right = delete(x, t.right, next_cd)

   return t



Nearest Neighbor Searching in kd-trees

• Nearest Neighbor Queries are very common: given a point Q find the 
point P in the data set that is closest to Q.

• Doesn’t work: find cell that would contain Q and return the point it 
contains.

- Reason: the nearest point to P in space may be far from P in the 
tree:

- E.g. NN(52,52):
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kd-Trees Nearest Neighbor

• Idea: traverse the whole tree, BUT make two 
modifications to prune to search space:

1. Keep variable of closest point C found so far. 
Prune subtrees once their bounding boxes say 
that they can’t contain any point closer than C

2.  Search the subtrees in order that maximizes the 
chance for pruning



Nearest Neighbor: Ideas, continued

dQuery 
Point Q

TBounding box 
of subtree 

rooted at T

If d > dist(C, Q), then no 
point in BB(T) can be 
closer to Q than C.
Hence, no reason to search 
subtree rooted at T.

Recurse, but start with the subtree “closer” to Q:
First search the subtree that would contain Q if we were 
inserting Q below T.

Update the best point so far, if T is better:
if dist(C, Q) > dist(T.data, Q), C := T.data



Nearest Neighbor, Code

def NN(Point Q, kdTree T, int cd, Rect BB):

   // if this bounding box is too far, do nothing
   if T == NULL or distance(Q, BB) > best_dist: return

   // if this point is better than the best:
   dist = distance(Q, T.data)
   if dist < best_dist: 
      best = T.data
      best_dist = dist
   // visit subtrees is most promising order:
   if Q[cd] < T.data[cd]:
      NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))
      NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))
   else:
      NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))
      NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))

Following Dave Mount’s Notes (page 77)

best, best_dist are global var
(can also pass into function calls)



Nearest Neighbor Facts

• Might have to search close to the whole tree in the 
worst case. [O(n)]

• In practice, runtime is closer to:
- O(2d + log n)
- log n to find cells “near” the query point
- 2d to search around cells in that neighborhood

• Three important concepts that reoccur in range / 
nearest neighbor searching:
- storing partial results: keep best so far, and update
- pruning: reduce search space by eliminating irrelevant trees.
- traversal order: visit the most promising subtree first.


