Four different ways to represent rotation

my head is spinning...

The space of rotations

$$
S O(3)=\left\{R \in R^{3 \times 3} \mid R R^{T}=I, \operatorname{det}(R)=+1\right\}
$$

Special orthogonal group(3):
why $\operatorname{det}(R)= \pm 1$?

Rotations preserve distance: $\quad\left\|R p_{1}-R p_{2}\right\|=\left\|p_{1}-p_{2}\right\|$
Rotations preserve orientation:

$$
\left(R p_{1}\right) \times\left(R p_{2}\right)=R\left(p_{1} \times p_{2}\right)
$$

The space of rotations

$$
S O(3)=\left\{R \in R^{3 \times 3} \mid R R^{T}=I, \operatorname{det}(R)=+1\right\}
$$

\uparrow
Special orthogonal group(3):
Why it's a group:

- Closed under multiplication: if $R_{1}, R_{2} \in S O(3)$ then $R_{1} R_{2} \in S O(3)$
- Has an identity: $\exists I \in S O(3)$ s.t. $I R_{1}=R_{1}$
- Has a unique inverse...
- Is associative...

Why orthogonal:

- vectors in matrix are orthogonal

Why it's special: $\operatorname{det}(R)=+1$, NOT $\operatorname{det}(R)= \pm 1$

Right hand coordinate system

Possible rotation representations

You need at least three numbers to represent an arbitrary rotation in SO (3) (Euler theorem). Some three-number representations:

- ZYZ Euler angles
- ZYX Euler angles (roll, pitch, yaw)
- Axis angle

One four-number representation:

- quaternions

ZYZ Euler Angles

$$
r_{z y z}=\left(\begin{array}{l}
\phi \\
\theta \\
\psi
\end{array}\right)
$$

To get from A to B :

1. Rotate ϕ about z axis
$\xrightarrow{\longrightarrow} R_{z}(\phi)=\left(\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right)$
2. Then rotate θ about y axis
3. Then rotate ψ about z axis
$\xrightarrow{R_{y}(\theta)}=\left(\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right)$

ZYZ Euler Angles

Remember that $R_{z}(\phi) R_{y}(\theta) R_{z}(\psi)$ encode the desired rotation in the prerotation reference frame:

$$
R_{z}(\phi)={ }^{\text {pre-rotation }} R_{\text {post-rotation }}
$$

Therefore, the sequence of rotations is concatentated as follows:

$$
\begin{gathered}
R_{z y z}(\phi, \theta, \psi)=R_{z}(\phi) R_{y}(\theta) R_{z}(\psi) \\
R_{z y z}(\phi, \theta, \psi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right) \\
R_{z y z}(\phi, \theta, \psi)=\left(\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right)
\end{gathered}
$$

ZYX Euler Angles (roll, pitch, yaw)

To get from A to B :

1. Rotate ϕ about z axis
2. Then rotate θ about y axis
$\xrightarrow{ } R_{z}(\phi)=\left(\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right)$
3. Then rotate ψ about x axis

$$
R_{z y x}(\phi, \theta, \psi)=R_{z}(\phi) R_{y}(\theta) R_{x}(\psi)
$$

$$
R_{z y z}(\phi, \theta, \psi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \psi & -\sin \psi \\
0 & \sin \psi & \cos \psi
\end{array}\right)
$$

Problems w/ Euler Angles

If two axes are aligned, then there is a "don't care" manifold of Euler angles that represent the same orientation

- The system loses one DOF

$$
\begin{aligned}
& r_{1}=\left(\begin{array}{c}
0 \\
90^{\circ} \\
0
\end{array}\right) \quad r_{2}=\left(\begin{array}{c}
90^{\circ} \\
89^{\circ} \\
90^{\circ}
\end{array}\right) \\
& r_{1}-r_{2}=\left(\begin{array}{c}
-90^{\circ} \\
1^{\circ} \\
-90^{\circ}
\end{array}\right) \text { but the actual distance is } 1^{\circ}
\end{aligned}
$$

Problem w/ Euler Angles: gimbal lock

1. When a small change in orientation is associated with a large change in rotation representation
2. Happens in "singular configurations" of the rotational representation (similar to singular configurations of a manipulator)
3. This is a problem w/ any Euler angle representation

Problem w/ Euler Angles: gimbal lock

Figure 2.1-24. IMU Gimbal Assembly

Problem w/ Euler Angles: gimbal lock

Axis-angle representation

Theorem: (Euler). Any orientation, $R \in S O(3)$, is equivalent to a rotation about a fixed axis, $\omega \in R^{3}$, through an angle $\theta \in[0,2 \pi)$
(also called exponential coordinates)

$$
\text { Axis: } \mathbf{k}=\left(\begin{array}{l}
k_{x} \\
k_{y} \\
k_{z}
\end{array}\right) \quad \text { Angle: } \boldsymbol{\theta}
$$

Converting to a rotation matrix:

$$
\begin{array}{r}
R_{\mathbf{k} \theta}=e^{S(\mathbf{k}) \theta}=I+S(\mathbf{k}) \sin (\theta)+S(\mathbf{k})^{2}(1-\cos (\theta)) \\
=[\text { that equation in the book...] }
\end{array}
$$

Rodrigues' formula

Axis-angle representation

Converting to axis angle:

Magnitude of rotation:

$$
\begin{aligned}
& \theta=|k|=\cos ^{-1}\left(\frac{\operatorname{trace}(R)-1}{2}\right) \\
& \hat{k}=\frac{1}{2 \sin \theta}\left(\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right) \\
& R=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{12} & r_{22} & r_{23} \\
r_{13} & r_{23} & r_{33}
\end{array}\right) \\
& \operatorname{trace}(R)=r_{11}+r_{22}+r_{33}
\end{aligned}
$$

and:

Axis-angle problems

Still suffers from the "edge" and distance preserving problems of Euler angles:
$r_{1}=\left(\begin{array}{c}0 \\ 0 \\ 179^{\circ}\end{array}\right) \quad r_{2}=\left(\begin{array}{c}0 \\ 0 \\ -179^{\circ}\end{array}\right)$

$$
r_{1}-r_{2}=\left(\begin{array}{c}
0 \\
0 \\
358^{\circ}
\end{array}\right)
$$

, but the actual distance is 2°

Distance metric changes as you get further from origin.

Axis-angle representation

Axis angle is can be encoded by just three numbers instead of four:

$$
\text { If } \quad k \neq 0 \text { then } \quad \hat{k}=\frac{k}{|k|} \quad \text { and } \quad \theta=|k|
$$

If the three-number version of axis angle is used, then

$$
R_{0}=I
$$

For most orientations, R_{k}, is unique.

For rotations of 180°, there are two equivalent representations:

$$
\text { If }|k|=180^{\circ} \text { then } \quad R_{k}=R_{-k}
$$

Projection distortions

Example: differencing rotations

Calculate the difference between these two rotations:

$$
k_{1}=\left(\begin{array}{c}
\pi / 2 \\
0 \\
0
\end{array}\right) \quad k_{2}=\left(\begin{array}{c}
0 \\
\pi / 2 \\
0
\end{array}\right)
$$

This is NOT the right answer: $\quad k_{1}-k_{2}=\left(\begin{array}{c}\pi / 2 \\ -\pi / 2 \\ 0\end{array}\right)$

According to that, this is the magnitude of the difference:

$$
\left|k_{1}-k_{2}\right|=\frac{\pi}{\sqrt{2}}=127.27^{\circ}
$$

Example: differencing rotations

Convert to rotation matrices to solve this problem:

$$
\begin{aligned}
& { }^{1} R_{2}={ }^{B} R_{1}{ }^{T B} R_{2} \\
& { }^{b} R_{1}=R_{x}(\pi / 2)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\pi / 2) & -\sin (\pi / 2) \\
0 & \sin (\pi / 2) & \cos (\pi / 2)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \\
& { }^{b} R_{2}=R_{y}(\pi / 2)=\left(\begin{array}{ccc}
\cos (\pi / 2) & 0 & \sin (\pi / 2) \\
0 & 1 & 0 \\
-\sin (\pi / 2) & 0 & \cos (\pi / 2)
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
& { }^{1} R_{2}={ }^{B} R_{1}^{T B} R_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right) \\
& \theta=\cos ^{-1}\left(\frac{\operatorname{trace}(R)-1}{2}\right)=\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2}{3} \pi \quad \hat{k}=\frac{1}{2 \sin \theta}\left(\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right)=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right) \quad k=\frac{\frac{2}{3} \pi}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

Quaternions

So far, rotation matrices seem to be the most reliable method of manipulating rotations. But there are problems:

- Over a long series of computations, numerical errors can cause these 3×3 matrices to no longer be orthogonal (you need to "orthogonalize" them from time to time).
- Although you can accurately calculate rotation differences, you can't interpolate over a difference.'
- Suppose you wanted to smoothly rotate from one orientation to another how would you do it?

Answer: quaternions...

Quaternions

Generalization of complex numbers:

$$
\begin{aligned}
& Q=q_{0}+i q_{1}+j q_{2}+k q_{3} \\
& Q=\left(q_{0}, q\right)
\end{aligned}
$$

Essentially a 4-dimensional quantity

Properties of complex dimensions:

$$
\begin{array}{ll}
i i=j j=k k=i j k=-1 & j k=-k j=i \\
i j=-j i=k & k i=-i k=j
\end{array}
$$

Multiplication:

$$
\begin{aligned}
& Q P=\left(q_{0}+i q_{1}+j q_{2}+k q_{3}\right)\left(p_{0}+i p_{1}+j p_{2}+k p_{3}\right) \\
& Q P=\left(p_{0} q_{0}-p \cdot q, p_{0} q+q_{0} p+p \times q\right)
\end{aligned}
$$

Complex conjugate: $\quad Q^{*}=\left(q_{0}, q\right)^{*}=\left(q_{0},-q\right)$

Quaternions

Invented by Hamilton in 1843:

Here as he walked by
on the 16 th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion muItiplication
$i^{2}=j^{2}=k^{2}=i j k=-1$
E cut it on a stone of this bridge

Along the royal canal in Dublin...

Quaternions

Let's consider the set of unit quaternions:

$$
Q^{2}=q_{0}^{2}+q_{1}^{2}+q_{2}{ }^{2}+q_{3}^{2}=1
$$

This is a four-dimensional hypersphere, i.e. the 3 -sphere S^{3}
The identity quaternion is: $\quad Q=(1,0)$
Since: $\quad Q Q^{*}=\left(q_{0}, q\right)\left(q_{0},-q\right)=\left(q_{0} q_{0}-q^{2}, q_{0} q-q_{0} q+q \times q\right)=(1,0)$
Therefore, the inverse of a unit quaternion is: $\quad Q^{*}=Q^{-1}$

Quaternions

Associate a rotation with a unit quaternion as follows:
Given a unit axis, \hat{k}, and an angle, $\theta:<$ (just like axis angle)
The associated quaternion is:

$$
Q_{\hat{k}, \theta}=\left(\cos \left(\frac{\theta}{2}\right) \hat{k} \sin \left(\frac{\theta}{2}\right)\right)
$$

Therefore, Q represents the same rotation as $-Q$

Let ${ }^{i} P=\left(0,{ }^{i} p\right)$ be the quaternion associated with the vector ${ }^{i} p$
You can rotate ${ }^{a} P$ from frame a to $b:{ }^{b} P=Q_{b a}{ }^{a} P Q_{b a}{ }^{*}$
Composition: $\quad Q_{c a}=Q_{c b} Q_{b a}$
Inversion: $Q_{c b}=Q_{c a} Q_{b a}^{-1}$

Example: Quaternions

Rotate $\quad{ }^{a} P=\left(0,\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right)$ by $Q=\left(\frac{1}{\sqrt{2}},\left(\begin{array}{c}0 \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right)\right)$

$$
\begin{aligned}
& { }^{b} P=Q^{a} P Q^{*}=\left(\frac{1}{\sqrt{2}},\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\right)\left(0,\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)\left(\begin{array}{c}
0 \\
\left.\frac{1}{\sqrt{2}},\binom{-\frac{1}{\sqrt{2}}}{0}\right)
\end{array}\right. \\
& =\left(\frac{1}{\sqrt{2}},\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\left(0,\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right)\right)\right. \\
& =\left(0,\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right)+\left(\begin{array}{c}
-\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right)\right)=\left(0,\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)\right)
\end{aligned}
$$

Example: Quaternions

Find the difference between these two axis angle rotations:

$$
k_{1}=\left(\begin{array}{c}
\pi / 2 \\
0 \\
0
\end{array}\right) \quad k_{2}=\left(\begin{array}{c}
0 \\
\pi / 2 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& \sin \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \quad Q_{c b}=\left(\frac{1}{\sqrt{2}},\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\right) \quad Q_{b a}=\left(\begin{array}{c}
\left.\frac{1}{\sqrt{2}},\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0
\end{array}\right)\right) ~
\end{array}\right. \\
& Q P=\left(p_{0} q_{0}-p \cdot q, p_{0} q+q_{0} p+p \times q\right) \\
& Q_{c b}=Q_{c a} Q_{b a}{ }^{-1}=\left(\frac{1}{\sqrt{2}},\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\right)\left(\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\left.\frac{1}{\sqrt{2}},\binom{0}{0}\right) ~
\end{array}\right. \\
& =\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\left(\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right)\right)=\left(\begin{array}{c}
-\frac{1}{2} \\
\left.\frac{1}{2},\binom{\frac{1}{2}}{-\frac{1}{2}}\right)
\end{array}\right. \\
& \theta_{c b}=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{2}{3} \pi \\
& k_{c b}=\left(\begin{array}{c}
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

Quaternions: Interpolation

Suppose you're given two rotations, R_{1} and R_{2}
How do you calculate intermediate rotations?

$$
R_{i}=\alpha R_{1}+(1-\alpha) R_{2} \ll \begin{gathered}
\text { This does not even result in a rotation } \\
\text { matrix }
\end{gathered}
$$

Do quaternions help?

$$
Q_{i}=\frac{\alpha Q_{1}+(1-\alpha) Q_{2}}{\left|\alpha Q_{1}+(1-\alpha) Q_{2}\right|}
$$

Suprisingly, this actually works

- Finds a geodesic

This method normalizes automatically (SLERP):

$$
Q_{i}=\frac{Q_{1} \sin (1-\alpha) \Omega+Q_{2} \sin \alpha \Omega}{\sin \Omega}
$$

Supplementary

ZYX Euler Angles (roll, pitch, yaw)

In Euler angles, the each rotation is imagined to be represented in the post-rotation coordinate frame of the last rotation

In Fixed angles, all rotations are imagined to be represented in the original (fixed) coordinate frame.

ZYX Euler angles can be thought of as:

1. ZYX Euler
2. $X Y Z$ Fixed

$$
R_{z y x}(\phi, \theta, \psi)=R_{z}(\phi) R_{y}(\theta) R_{x}(\psi)
$$

