Four different ways to represent rotation

my head is spinning...

s



The space of rotations

SO(3)={Re R**| RR" =1, det(R) = +1]

N

\

Special orthogonal group(3):

Why d@t(R) =t1»

Rotations preserve distance:

Rotations preserve orientation:

HRpl _RP2H :‘

[Rp,)x(Rp,




The space of rotations

SO(3)={Re R**| RR" =1, det(R) = +1]

\

Special orthogonal group(3):
Why it's a group:
* Closed under multiplication: if Rp R2 = 50(3) then Rle c 50(3)
* Hasanidentity:  37e SO(3)s.t. IR, =R,

* Has a unique inverse...

 |s associative...

Why orthogonal:

* vectors in matrix are orthogonal

Why it's special: det(R) =+1,NOT det(R)=*1
A

Right hand coordinate system



Possible rotation representations

You need at least three numbers to represent an
arbitrary rotation in SO(3) (Euler theorem). Some
three-number representations:

* ZYZ Euler angles

 ZYX Euler angles (roll, pitch, yaw)
* Axis angle

One four-number representation:

* quaternions



ZYZ Euler Angles

(¢
rzyz — H
¥
To get from A to B: R (¢) =
7 Yz
1. Rotate ¢ about z axis —
2. Then rotate @ about y axis
>R,(0)=

3. Then rotate Y about z axis

N

“R,(y) =

(cos¢p —sing O)

sing cos¢ O
\ 0 0 1)
(cos®@ 0 sin@)
0 1 0
—sin@ 0O cosej

\
(cosyy —siny 0)
siny

\0 0 1)

cosy O




ZYZ Euler Angles

Remember that R, (9) R, (6) R,(y)encode the desired rotation in the pre-
rotation reference frame:

RZ (¢):pre—rotationR

post—rotation

Therefore, the sequence of rotations is concatentated as follows:

R,,(0,6,y)=R,(#)R, (O)R,(y)

(cos¢p —sing O0Y cos@ 0 sinf Ycosy —siny 0
Rzyz(¢,9,l//): sing cos¢ O 0 1 0 siny cosy O

\ 0 0 1)\—51n9 0 C089)\ 0 0 1)

( _ _ _ A
CyCoC, —SsS, —CyCyS, —S4C,  C4Sg

Rzyz(¢,0,w): S4CoCy T Cy3S,,  —854;C4S, +C4C, 545,

—S,C SgS C,

v 4

\ J



ZY X Euler Angles (roll, pitch, yaw)

(cos¢p —sing O)
To get from A to B: /7 RZ (¢) — Sjn¢ COS¢ 0
1. Rotate @about z axis 0 0 iy

2. Then rotate @ about y axis (cos6 0 sind )
>R@= 0 1 0

- sinf 0 cos6@ )
(10 0 )
*R(W)=|0 cosy -—siny
\O sinyy  cosy )

3. Then rotate ¥ about x axis

R,.[0,.0,)=R,(#)R (6)R,(¥)

(cos¢p —sing O0Y cos®@ 0 sin@Y1l O 0
Rzyz((b,e,w): sing cos¢p O 0 1 0 [0 cosy -—siny

\ 0 0 1)\—51110 0 COSQ)\() siny/ cosy



Problems w/ Euler Angles

If two axes are aligned, then there is a “don’t care” manifold of Euler angles
that represent the same orientation

* The system loses one DOF

(0 ) (90"
rn=|90 r,=|89
\ 0 ) \90 )
(_g0° )
r—r,=| 1 but the actual distanceis 1’
—-90
\ J




Problem w/ Euler Angles: gimbal lock

1. When a small change in orientation is
associated with a large change in rotation
representation

2. Happens in “singular configurations” of the
rotational representation (similar to
singular configurations of a manipulator)

3. This is a problem w/ any Euler angle
representation




Problem w/ Euler Angles: gimbal lock

TORQUE MOTOR

DUPLEX BALL-BEARING +>l<'f:.x|s
SLIPRING (50-CONTACT)
OG AXIS
GYRO ERROR RESOLVER (1X)
DUPLEX BALL-BEARING TORQUE MOTOR
SLIPRING (40-CONTACT) DUPLEX BALL-BEARING

MULTISPEED RESOLVER
(1X AND 16X)

SLIPRING (40-CONTACT)

M
OUTER <+ z.AXIS
GIMBAL
MG AXIS
MIDDLE
GIMBAL STABLE
MEMBER
IG AXIS
M
IMU CASE
(CUTAWAY) + v-Axis
TORQUE MOTOR
DUPLEX BALL-BEARING
SLIPRING (40-CONTACT)
DUPLEX BALL-BEARING DUPLEX BALL-BEARING
SLIPRING (40-CONTACT) SLIPRING (50-CONTACT)
MULTISPEED RESOLVER (1X AND 16X) MULTISPEED RESOLVER (1X AND 16X)

Figure 2,1-24, IMU Gimbal Assembly

Note:

Xg™== X |RIG; Xa ==X PIP
Yg=Y IRIG; Ya==Y PIP
Zg==ZIRIG; Za==Z PIP

300LM4-152
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Axis-angle representation

Theorem: (Euler). Any orientation, R e SO(B) , is equivalent to a rotation
about a fixed axis, @e R’ through an angle 6 < [0,27)

(also called exponential coordinates)

/kx\
Axiss k =|k Angle: @

y

Kz

Converting to a rotation matrix:

—I+S sm ) 1 cos )

/ |that equation in the book...]

Rodrigues’ formula



Axis-angle representation

Converting to axis angle:

Magnitude of rotation:

AXxis of rotation:

Where:

and:

Hz‘k‘:cos‘l trace(R)—1
2
A 1 I3y =13
k = r.,—r
2sin@| ©
\r21_r12/
(rll r12 r13

I I I
\ 13 23 33 )

trace(R)=r,, +r, + 1,

J



Axis-angle problems

Still suffers from the “edge” and distance preserving problems of Euler

angles:

(0
0

179

\

\

J

(0 )
(0 ) rn-r,=| 0
O o
o \358 )
. y, . but the actual distance is 2°

<—— Distance metric changes as you
get further from origin.



Axis-angle representation

AXis angle is can be encoded by just three numbers instead of four:

f  k #0 then l%zﬁ and HZ‘R‘

If the three-number version of axis angle is used, then
R =1

For most orientations, Rk , IS unique.

For rotations of 180", there are two equivalent representations:

If‘k‘ =180then R, =R,



Projection distortions
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Example: differencing rotations

Calculate the difference between
these two rotations:

This is NOT the right answer: k1 — k2 —

According to that, this is the ‘kl —k,

magnitude of the difference:

k, =

0

‘:7'[

s

\0

(7))

J

=127.27




Example: differencing rotations

Convert to rotation matrices to solve this problem:

(7))
1R2:B TB k1: O
0
1 10 0 \ "/
"R, =R_(%)=|0 cos(% —sm?V =0 0 -1
0 sin(%) cos(%) 01 O
cos’V O sm(’V 0 0 1
"R, =R,[%) = =0 10
—sm’V 0 cos(% -1 0 O
(1 0 0\/ 0 1) (0 0 1)
'R,=°R'PR,=|0 0 1 1 0|=[-1 0 O
\O -1 O)\—l 0 O) \O —1 O)
r,, —T.
9=C051(tmce(R)_1j:cosl _l]:;n i 1 :2_r23 :i
p) 2 3 2S]D0 13 31 \/g
r21 r12




Quaternions

So far, rotation matrices seem to be the most reliable method of manipulating
rotations. But there are problems:

* Over a long series of computations, numerical errors can cause these 3x3
matrices to no longer be orthogonal (you need to “orthogonalize” them from

time to time).

* Although you can accurately calculate rotation differences, you can’t
Interpolate over a difference.’

* Suppose you wanted to smoothly rotate from one orientation to another —
how would you do it?

Answer: quaternions...



Quaternions

Generalization of complex numbers: Q=q,+iq, + jq, +kq,

_Q=(q.9
/

Essentially a 4-dimensional quantity

Properties of complex il = jj =kk =ijk =-1 jk==kj=i
dimensions:

jj=—ji=k ki=—ik = |

Multiplication: QP = (qo + l'q1 + jq2 + qu)( Do + ip1 + jp2 + kp3)
QP =(p,q, — -, P,G+qyp + PXq)

Complex conjugate: Q* = (qo, q)* — (qO’_Q)



Quaternions

Invented by Hamilton in 1843:

Along the royal canal in Dublin...

=

- —l

Here as he walked by

on the 16th of October 1843

in a flash of genius discov

the fundamental formul

quaternion multiplica
i’=j'=R’=ijR=-I

cut it on a stone of'this b



Quaternions

Let’s consider the set of unit
, . 2 2 2 2
quaternions: Q* = qg,”+q, +q,” +q, =1
41

/

This is a four-dimensional hypersphere, i.e. the 3-sphere S’

The identity quaternionis:  Q = (1,0)

since:  QQ" =(q,,q )(qo,—Q):(%%_qzaqu—qOCI"‘qXQ):(LO)

Therefore, the inverse of a unit quaternion is: Q* = Q_1



Quaternions

Associate a rotation with a unit quaternion as follows:

o

Given a unit axis, k , and an angle, O < (just like axis angle)

. o 6\~. (6
The associated quaternion is: ngl9 =] COS E k sin E

Therefore, () represents the same rotationas —(Q

Let 'p = ((),"p) be the quaternion associated with the vector ip
a . bp _ a *

You can rotate “P from frame atob: °P =Q, ‘PQ,_

Composition: Q. =Q_,Q,.

-1
Inversion: ch — QcaQba



Example: Quaternions

[ (1)) [ (0
Rotate ap _ 0,| 0 by Q= %, %
0
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Example: Quaternions

(7 4
Find the difference between these two axis angle 7 0
rotations: k,=| 0 k,=|%
0) 0
0 %
1 T — 7|l _ 1 2
sin%) = cos(%) =75 Q=|HlE]] Q=50
0 0
QP:(Poqo—P'q,P0q+q0p+p><q)
0)Y  [—_L))
— i 1 1 1
ch _QcaQba —| 2 2 ek 0
\ \O//\ \ 0 J) chzcos_l(%):%ﬂ-
( (_a ) ([ /_1)) p
J2 2 _ 1
—|1 1| L ||=|1] 1 V3
= 2’\/5 \/E | 20> 2 ka_ %
_ 1 1 o
NN NN 7




Quaternions: Interpolation

Suppose you’re given two rotations, R1 and R2

How do you calculate intermediate rotations?

_ This does not even result in a rotation
R =aR, +(1-a)R, —— s doe:

Do quaternions help?
_aQ+ (1— 06)Q2 Suprisingly, this actually works
‘Oth + (1— O()Qz‘ * Finds a geodesic

Q

This method normalizes automatically (SLERP):

Q, sin(1-a)Q +Q, sin o
sin €2

Q =




Supplementary



ZY X Euler Angles (roll, pitch, yaw)

In Euler angles, the each rotation is imagined to be represented in the
post-rotation coordinate frame of the last rotation

In Fixed angles, all rotations are imagined to be represented in the original
(fixed) coordinate frame.

ZY X Euler angles can be thought of as:
1. ZYX Euler
2. XYZ Fixed

R,.[0,0,¥)=R,(§)R,(O)R,(¥)
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