Breadth first search
Uniform cost search

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

What is graph search?

[[] Oradea

Arad L]

Goal state

Fagaras

99

118 td vaslui

Rimnicu Vilcea

1 Timisoara

Pitesti

Start state

L] Hirsova

[] Mehadia

Urziceni

Drobeta []

Bucharest

st s T Eforie
Craiova [] Giurgiu

What is a graph?

Graph: G = (V, F)

Vertices: |/

Edges: F

/ \ Directed graph
V ={A,B,C}
—=(©

b= {(B7A)7 (Av C)? (Bv C)v (Ca B)}

What is a graph?

Graph: G = (V, F)

Vertices: |/

Edges: F

: ‘ Undirected graph
V ={A,B,C,D}

@ @ E = {{4,C},{4, B},{C, D},{B, D},{C, B}}

Graph search

7] Oradea

Arad L

Sibiu 99 Fagaras

Ml L1 Vaslui

0 Timisoara

L] Hirsova

| | Mehadia

75 46

Drobeta []

Bucharest

et s Eforie
Craiova | Giurgiu

Given: a graph, G
Problem: find a path from Ato B

— A start state

— B: goal state

A search tree

75

Arad L]

118 L] Vaslui

-] Timisoara
Pitesti

LJ Hirsova

[] Mehadia Urziceni

% 86

Drobeta []

Bucharest

Nt s o Eforie
Craiova [] Giurgiu

Start at A

A search tree

[] Oradea

Arad L]

Fagaras

99

118

Rimnicu Vilcea

-] Timisoara
Pitesti

LJ Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Pt s o Eforie
Craiova [] Giurgiu

/
@ > @ ¢ Successors of A

A search tree

[] Oradea

Arad L]

Sibiu 99 Fagaras

118

-] Timisoara

Pitesti

LJ Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Pt s o Eforie
Craiova [] Giurgiu

/ { S fA
@ > @ uccessors o

parent children

A search tree

[] Oradea

Arad L]

Fagaras

99

118

Rimnicu Vilcea

-] Timisoara
Pitesti

LJ Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Craiova Eforie

oitc,

[] Giurgiu

Let's expand S
next

1

A search tree

[] Oradea

Arad L]

Sibiu 99 Fagaras

118

Rimnicu Vilcea

-] Timisoara

Pitesti

LJ Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Craiova Eforie

oitc,

[] Giurgiu

¢ sSuccessors
/ of S

A search tree

[] Oradea

Arad L]

Sibiu 99 Fagaras

118

Rimnicu Vilcea

-] Timisoara

Pitesti

LJ Hirsova

[] Mehadia

Urziceni
75 86

Drobeta []

Hogdis s o Eforie
Craiova [] Giurgiu

A was already
/ visited!

A search tree

118 L Vaslui

-] Timisoara

L] Hirsova

[] Mehadia Urziceni

]
Drobeta []

Craiova

A search tree

/
D@
@/@

NG

— here, we expanded S, but we could also have expanded Zor T

In what order should we expand states?

— different search algorithms expand in different orders

Breadth first search (BFS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Breadth first search (BFS)

@

Breadth first search (BFS)

@ Start node

Breadth first search (BFS)

®
oG

Breadth first search (BFS)

@)
NG
©)
YN

@ ®

Breadth first search (BFS)

/@\

@/ \@ @/ \@

Breadth first search (BFS)

Fringe We're going to maintain a queue called the fringe

— Initialize the fringe as an empty queue

Breadth first search (BFS)

.

: <:::> : <iJ fringe
Fringe : :

— add A to the fringe

Breadth first search (BFS)

® ©) i

-- remove A from the fringe

-- add successors of A to the fringe

Breadth first search (BFS)

-- remove B from the fringe

-- add successors of B to the fringe

Breadth first search (BFS)

--

-- remove C from the fringe

-- add successors of C to the fringe

Breadth first search (BFS)

--

Which state gets removed next from the fringe?

Breadth first search (BFS)

Which state gets removed next from the fringe?

What kind of a queue is this?

Breadth first search (BFS)

Which state gets removed next from the fringe?

What kind of a queue is this?

Breadth first search (BFS)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node +— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+—a FIFO queue with node as the only element
explored +— an empty set
loop do
if EMPTY?(frontier) then return failure
node «+ POP(frontier) [* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE(problem, node, action)
if child .STATE is not in explored or frontier then
if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

Breadth first search (BFS)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node +— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+—a FIFO queue with node as the only element

frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

What is the purpose of the explored set?

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution
— complexity = ?7??

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(b%)

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(b%)

What is the space complexity of BFS?
— how much memory is required?
— complexity = ?7??

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(b%)

What is the space complexity of BFS?
— how much memoryv is C|5equired?
— complexity = O (b%)

BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(b%)

What is the space complexity of BFS?
— how much memoryv is required?

— complexity = O (b%)

Is BFS optimal?
— Is it guaranteed to find the best solution (shortest path)?

Another BFS example...

Uniform Cost Search (UCS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Uniform Cost Search (UCS)

] Oradea

75

Arad

18 L Vaslui

Timisoara

Pitesti

70
L] Hirsova

| | Mehadia

Urziceni

75 86

Drobeta []

Bucharest

s o Eforie
Craiova] Giurgiu

Notice the distances between cities

Uniform Cost Search (UCS)

] Oradea

75

Arad

118

Timisoara

Pitesti

70
L] Hirsova

| | Mehadia

Urziceni

75 86

Drobeta []

Bucharest

y .
s o Eforie
Craiova] Giurgiu

Notice the distances between cities
— does BFS take these distances into account?

Uniform Cost Search (UCS)

] Oradea

75

Arad

118

Timisoara

Pitesti

70
L] Hirsova
| | Mehadia

75 86

Drobeta []

Bucharest

s o Eforie
Craiova [] Giurgiu

Notice the distances between cities
— does BFS take these distances into account?
— does BFS find the path w/ shortest milage?

Uniform Cost Search (UCS)

] Oradea

75

Arad

118

Timisoara

Pitesti

70
L] Hirsova

| | Mehadia
86

75
Drobeta []

Bucharest

Eforie

2 ! H T o .
Craiova [] Giurgiu

Notice the distances between cities

— does BFS take these distances into account?

— does BFS find the path w/ shortest milage?

— compare S-F-B with S-R-P-B. Which costs less?

Uniform Cost Search (UCS)

7] Oradea
Neamt
O
87
L Iasi
Arad L
ibi 92
_ Sibiu 5 Fagaras
- L] Vaslui
80
= Timisoara - Rimnicu Vilcea
211 142
L] Lugoj Pitesti
O
70 .
i 85— 2 [Hirsova
S 101 Urziceni
5 138 T ”
Bucharest
Drobeta [120
0 90]
Craiova . Eforie
[] Giurgiu
Notic
— doe i
— doe
less?

Uniform Cost Search (UCS)

7] Oradea
Neamt
O
87
L Iasi
Arad L
Sibi 92
R Fagaras
- L] Vaslui
80
= Timisoara - Rimnicu Vilcea
211 142
L] Lugoj Pitesti
O
i i 85— LB [
S 101 Urziceni
5 138 T ”
Bucharest

Drobeta []

- 90
Craiova - Giurgin

Eforie

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A, B)

Minimum cost of path going from start state to B: g(B)

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A, B)

Minimum cost of path going from start state to B: g(B)

BFS: expands states in order of hops from start

UCS: expands states in order of g(S)

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A, B)

Minimum cost of path going from start state to B: g(B)

BFS: ex

UCS: ex

Uniform Cost Search (UCS)

Simple answer: change the FIFO to a priority queue
— the priority of each element in the queue is its path cost.

Uniform Cost Search (UCS)

] Oradea
71
[|
75 151
Arad
s Sibiu 99 Fagaras
118
80
Timi Rimnicu Vilcea
imisoara -
111 m Lllgﬁj Pitesti
[|
70
| | Mehadia
75 138
Drobeta [] 120
[l
Craiova

Neamt
|
87
J Iasi
02
L1 Vaslui
142
211
08 i
85 Irsova
101 Urziceni
- 86
Bucharest
90
Eforie

[] Giurgiu

UCS

Fringe Path Cost
A 0

Explored set:

UCS

Fringe Path Cost @ s
A—0—
140
T 118
Z 75

Explored set: A

UCS

Fringe Path Cost @ s
P—<@:/
140
S 140 / % 1]\

T 118
Z 15—
T 146

146

Explored set: A, Z

UCS

Fringe Path Cost @

A—0— 140 75

S 140 118
z o (5) (2)
Z 15—

T 146

L 229 229 146

Explored set: A, Z, T

UCS

Fringe Path Cost @ -
A—0 —

S 140 14i/ 118

z o () (2)
<z 15—

T 146

L 229 23 220 229 146
F 239

e ® B

Explored set: A, Z, T, S

UCS

Fringe Path Cost @ -
A—0 —

S 140 14i/ 118

T 118

= @ o
T 146

L 229 23 220 229 146
F 239

Explored set: A, Z, T, S

Fringe Path Cost

R—220-
C 336 @
P

Explored set: A, Z, T, S, R

UCS

@

141/ 118

(5)
23’9/ \zzo

336

©

()

317

®

229

75

©

146

UCS

Fringe Path Cost
A——0— 75
S——140 14i/ 118

5 (s)

2|><ﬁ§ @
F 239
R—220"

% @ &)

299 299
336 317

© @

Exploredset: A, Z, T,S,R, L

(=)

vy

UCS

Exploredset: A, Z, T, S, R, L

UCS

Exploredset: A, Z, T, S, R, L

UCS

Exploredset: A, Z, T, S, R, L

UCS

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node «— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
frontier «— a priority queue ordered by PATH-COST, with node as the only element
ezplored +— an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) [* chooses the lowest-cost node in frontier */
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child +— CHILD-NODE(problem, node, action)
if child .STATE is not in explored or frontier then
frontier «— INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition
of an extra check in case a shorter path to a frontier state is discovered. The data structure for
frontier needs to support efficient membership testing, so it should combine the capabilities

of a priority queue and a hash table.

UCS Properties

Is UCS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— C*: cost of optimal sol'n
— €. min one-step cost

— complexity = O(bc*/e)

What is the space complexity of BFS?
— how much memorv is ggulrpd?
— complexity = O(b~ /)

Is BFS optimal?
— Is it guaranteed to find the best solution (shortest path)?

UCS vs BFS

Strategy: expand a
cheapest node first:
Fringe is a priority queue
(priority: cumulative cost)

/
(@ 1
_— |
@4@ (e 5 W17 (H11 (@ 16
| P = A
Cost @6 a @13®7 p q f
contours | PN
p q @8 g ¢ ¢
q 11@ @) 10 a
- a

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

UCS vs BFS

Strategy: expand
a shallowest node
first

Implementation:
Fringe is a FIFO
queue

Search

Tiers

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

UCS vs BFS

Remember: UCS explores
INnCreasing cost contours

The good: UCS is complete and
optimal!

The bad:
" Explores options in every

“direction”
" No information about goal
location Goal

We’'ll fix that soon!

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

