

Breadth first search
Uniform cost search

Robert Platt
Northeastern University

Some images and slides are used from:
1. CS188 UC Berkeley
2. RN, AIMA

What is graph search?

Start state

Goal state

What is a graph?

Graph:

Edges:

Vertices:

Directed graph

What is a graph?

Graph:

Edges:

Vertices:

Undirected graph

Graph search

Given: a graph, G

Problem: find a path from A to B

– A: start state

– B: goal state

A search tree

Start at A

A search tree

Successors of A

A search tree

Successors of A

parent children

A search tree

Let's expand S
next

A search tree

Successors
of S

A search tree

A was already
visited!

A search tree

A was already
visited!So, prune it!

A search tree

In what order should we expand states?

– here, we expanded S, but we could also have expanded Z or T

– different search algorithms expand in different orders

Breadth first search (BFS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Breadth first search (BFS)

Breadth first search (BFS)

Start node

Breadth first search (BFS)

Breadth first search (BFS)

Breadth first search (BFS)

Breadth first search (BFS)

We're going to maintain a queue called the fringe

– initialize the fringe as an empty queue

Fringe

Breadth first search (BFS)

– add A to the fringe

fringe
Fringe
A

Breadth first search (BFS)

-- remove A from the fringe

-- add successors of A to the fringe

fringe

Fringe
B
C

Breadth first search (BFS)

-- remove B from the fringe

-- add successors of B to the fringe

fringe

Fringe
C
D
E

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

-- remove C from the fringe

-- add successors of C to the fringe

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

What kind of a queue is this?

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

What kind of a queue is this?

FIFO Queue!
(first in first out)

Breadth first search (BFS)

Breadth first search (BFS)

What is the purpose of the explored set?

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity = ???

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity =

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity = ???

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity =

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity =

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?

Another BFS example...

Uniform Cost Search (UCS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

Uniform Cost Search (UCS)

Notice the distances between cities

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

How do we fix this?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

How do we fix this?
UCS!

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

BFS: expands states in order of hops from start

UCS: expands states in order of

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

BFS: expands states in order of hops from start

UCS: expands states in order of How?

Uniform Cost Search (UCS)

Simple answer: change the FIFO to a priority queue
– the priority of each element in the queue is its path cost.

Uniform Cost Search (UCS)

UCS

Fringe
A

Path Cost
0

Explored set:

UCS

140 118
75

Explored set: A

Fringe
A
S
T
Z

Path Cost
0
140
118
75

UCS

140 118
75

146

Explored set: A, Z

Fringe
A
S
T
Z
T

Path Cost
0
140
118
75
146

UCS

140 118
75

146229

Explored set: A, Z, T

Fringe
A
S
T
Z
T
L

Path Cost
0
140
118
75
146
229

UCS

140 118
75

239 220 146229

Explored set: A, Z, T, S

Fringe
A
S
T
Z
T
L
F
R

Path Cost
0
140
118
75
146
229
239
220

UCS

140 118
75

239 220 146229

Explored set: A, Z, T, S

Fringe
A
S
T
Z
T
L
F
R

Path Cost
0
140
118
75
146
229
239
220

UCS

140 118
75

239 220

336 317

146229

Explored set: A, Z, T, S, R

Fringe
A
S
T
Z
T
L
F
R
C
P

Path Cost
0
140
118
75
146
229
239
220
336
317

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?
– when the goal state is removed from the queue

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?
– when the goal state is removed from the queue
– NOT when the goal state is expanded

UCS

UCS Properties

Is UCS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– C*: cost of optimal sol'n
– e: min one-step cost
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity =

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

UCS vs BFS

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

UCS vs BFS

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand
a shallowest node
first

Implementation:
Fringe is a FIFO
queue

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

UCS vs BFS

Start Goal

…

c 3

c 2
c 1 Remember: UCS explores

increasing cost contours

 The good: UCS is complete and
optimal!

 The bad:
 Explores options in every

“direction”
 No information about goal

location

 We’ll fix that soon!

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

