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What is a graph?

Graph: G = (V, F)

Vertices: |/

Edges: F

/ \ Directed graph
V ={A,B,C}
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What is a graph?

Graph: G = (V, F)

Vertices: |/

Edges: F

: ‘ Undirected graph
V ={A,B,C,D}

@ @ E = {{4,C},{4, B},{C, D},{B, D},{C, B}}




Graph search
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Given: a graph, G
Problem: find a path from Ato B

— A start state

— B: goal state



A search tree
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A search tree
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A search tree

[] Oradea

Arad L]

Fagaras

99

118

Rimnicu Vilcea

-] Timisoara
Pitesti

LJ Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Craiova Eforie

oitc,

[] Giurgiu

Let's expand S
next
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A search tree
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A search tree
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A was already
/ visited!




A search tree
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A search tree
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— here, we expanded S, but we could also have expanded Zor T

In what order should we expand states?

— different search algorithms expand in different orders



Breadth first search (BFS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



Breadth first search (BFS)
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Breadth first search (BFS)

@ Start node



Breadth first search (BFS)
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Breadth first search (BFS)
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Breadth first search (BFS)
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Breadth first search (BFS)

Fringe We're going to maintain a queue called the fringe

— Initialize the fringe as an empty queue



Breadth first search (BFS)

.

: <:::> : <iJ fringe
Fringe : :

— add A to the fringe



Breadth first search (BFS)
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-- remove A from the fringe

-- add successors of A to the fringe



Breadth first search (BFS)

-- remove B from the fringe

-- add successors of B to the fringe



Breadth first search (BFS)

------------------------------------------

-- remove C from the fringe

-- add successors of C to the fringe



Breadth first search (BFS)

------------------------------------------

Which state gets removed next from the fringe?



Breadth first search (BFS)

-----------------------------------------

Which state gets removed next from the fringe?

What kind of a queue is this?



Breadth first search (BFS)

Which state gets removed next from the fringe?

What kind of a queue is this?




Breadth first search (BFS)

function BREADTH-FIRST-SEARCH( problem) returns a solution, or failure

node +— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+—a FIFO queue with node as the only element
explored +— an empty set
loop do
if EMPTY?( frontier) then return failure
node «+ POP( frontier) [* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE( problem, node, action)
if child .STATE is not in explored or frontier then
if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier «— INSERT(child, frontier)

Figure 3.11  Breadth-first search on a graph.




Breadth first search (BFS)

function BREADTH-FIRST-SEARCH( problem) returns a solution, or failure

node +— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+—a FIFO queue with node as the only element

--------------------

frontier «— INSERT(child, frontier)

Figure 3.11  Breadth-first search on a graph.

What is the purpose of the explored set?




BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?




BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution
— complexity = ?7??




BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(b%)




BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(b%)

What is the space complexity of BFS?
— how much memory is required?
— complexity = ?7??



BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(b%)

What is the space complexity of BFS?
— how much memoryv is C|5equired?
— complexity = O (b%)




BFS Properties

Is BFS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(b%)

What is the space complexity of BFS?
— how much memoryv is required?

— complexity = O (b%)

Is BFS optimal?
— Is it guaranteed to find the best solution (shortest path)?



Another BFS example...



Uniform Cost Search (UCS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Notice the distances between cities
— does BFS take these distances into account?



Uniform Cost Search (UCS)
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Notice the distances between cities
— does BFS take these distances into account?
— does BFS find the path w/ shortest milage?



Uniform Cost Search (UCS)
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Notice the distances between cities

— does BFS take these distances into account?

— does BFS find the path w/ shortest milage?

— compare S-F-B with S-R-P-B. Which costs less?



Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path




Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A, B)

Minimum cost of path going from start state to B: g(B)



Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A, B)

Minimum cost of path going from start state to B: g(B)

BFS: expands states in order of hops from start

UCS: expands states in order of g(S)



Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A, B)

Minimum cost of path going from start state to B: g(B)

BFS: ex

UCS: ex



Uniform Cost Search (UCS)

Simple answer: change the FIFO to a priority queue
— the priority of each element in the queue is its path cost.



Uniform Cost Search (UCS)
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UCS

Fringe Path Cost
A 0

Explored set:



UCS
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UCS
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UCS
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UCS
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Fringe Path Cost
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UCS

Exploredset: A, Z, T, S, R, L



UCS

Exploredset: A, Z, T, S, R, L



UCS

Exploredset: A, Z, T, S, R, L



UCS

function UNIFORM-COST-SEARCH( problem) returns a solution, or failure

node «— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
frontier «— a priority queue ordered by PATH-COST, with node as the only element
ezplored +— an empty set
loop do
if EMPTY?( frontier) then return failure
node < POP( frontier) [* chooses the lowest-cost node in frontier */
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child +— CHILD-NODE( problem, node, action)
if child .STATE is not in explored or frontier then
frontier «— INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Figure 3.14  Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition
of an extra check in case a shorter path to a frontier state is discovered. The data structure for
frontier needs to support efficient membership testing, so it should combine the capabilities

of a priority queue and a hash table.




UCS Properties

Is UCS complete?
— Is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?

— how many states are expanded before finding a sol'n?
— b: branching factor
— C*: cost of optimal sol'n
— €. min one-step cost

— complexity = O(bc*/e)

What is the space complexity of BFS?
— how much memorv is ggulrpd?
— complexity = O(b~ /)

Is BFS optimal?
— Is it guaranteed to find the best solution (shortest path)?



UCS vs BFS

Strategy: expand a
cheapest node first:
Fringe is a priority queue
(priority: cumulative cost)
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Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



UCS vs BFS

Strategy: expand
a shallowest node
first

Implementation:
Fringe is a FIFO
queue

Search

Tiers

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



UCS vs BFS

Remember: UCS explores
INnCreasing cost contours

The good: UCS is complete and
optimal!

The bad:
" Explores options in every

“direction”
" No information about goal
location Goal

We’'ll fix that soon!

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)
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