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What is graph search?

Start state

Goal state



  

What is a graph?

Graph:

Edges:

Vertices:

Directed graph



  

What is a graph?

Graph:

Edges:

Vertices:

Undirected graph



  

Graph search

Given: a graph, G

Problem: find a path from A to B

– A: start state

– B: goal state



  

A search tree

Start at A



  

A search tree

Successors of A



  

A search tree

Successors of A

parent children



  

A search tree

Let's expand S 
next



  

A search tree

Successors 
of S



  

A search tree

A was already 
visited!



  

A search tree

A was already 
visited!So, prune it!



  

A search tree

In what order should we expand states?

– here, we expanded S, but we could also have expanded Z or T

– different search algorithms expand in different orders



  

Breadth first search (BFS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



  

Breadth first search (BFS)



  

Breadth first search (BFS)

Start node



  

Breadth first search (BFS)



  

Breadth first search (BFS)



  

Breadth first search (BFS)



  

Breadth first search (BFS)

We're going to maintain a queue called the fringe

– initialize the fringe as an empty queue

Fringe



  

Breadth first search (BFS)

– add A to the fringe

fringe
Fringe
A



  

Breadth first search (BFS)

-- remove A from the fringe

-- add successors of A to the fringe

fringe

Fringe
B
C



  

Breadth first search (BFS)

-- remove B from the fringe

-- add successors of B to the fringe

fringe

Fringe
C
D
E



  

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

-- remove C from the fringe

-- add successors of C to the fringe



  

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?



  

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

What kind of a queue is this?



  

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

What kind of a queue is this?

FIFO Queue!
(first in first out)



  

Breadth first search (BFS)



  

Breadth first search (BFS)

What is the purpose of the explored set?



  

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?



  

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity = ???
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BFS Properties
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– is it guaranteed to find a solution if one exists?
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BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– d: depth of shallowest solution
– complexity = 

What is the space complexity of BFS?
– how much memory is required?

– complexity = 

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?



  

Another BFS example...



  

Uniform Cost Search (UCS)

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



  

Uniform Cost Search (UCS)

Notice the distances between cities



  

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?



  

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?



  

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?



  

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

How do we fix this?



  

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

How do we fix this?
UCS!



  

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path



  

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:



  

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

BFS: expands states in order of hops from start

UCS: expands states in order of 



  

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

BFS: expands states in order of hops from start

UCS: expands states in order of How?



  

Uniform Cost Search (UCS)

Simple answer: change the FIFO to a priority queue
– the priority of each element in the queue is its path cost.



  

Uniform Cost Search (UCS)



  

UCS

Fringe
A

Path Cost
0

Explored set:



  

UCS

140 118
75

Explored set: A

Fringe
A
S
T
Z

Path Cost
0
140
118
75



  

UCS

140 118
75

146

Explored set: A, Z

Fringe
A
S
T
Z
T

Path Cost
0
140
118
75
146



  

UCS

140 118
75

146229

Explored set: A, Z, T

Fringe
A
S
T
Z
T
L

Path Cost
0
140
118
75
146
229



  

UCS

140 118
75

239 220 146229

Explored set: A, Z, T, S

Fringe
A
S
T
Z
T
L
F
R

Path Cost
0
140
118
75
146
229
239
220



  

UCS

140 118
75

239 220 146229

Explored set: A, Z, T, S

Fringe
A
S
T
Z
T
L
F
R

Path Cost
0
140
118
75
146
229
239
220



  

UCS

140 118
75

239 220

336 317

146229

Explored set: A, Z, T, S, R

Fringe
A
S
T
Z
T
L
F
R
C
P

Path Cost
0
140
118
75
146
229
239
220
336
317



  

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299



  

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?



  

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?
– when the goal state is removed from the queue



  

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?
– when the goal state is removed from the queue
– NOT when the goal state is expanded



  

UCS



  

UCS Properties

Is UCS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?
– how many states are expanded before finding a sol'n?

– b: branching factor
– C*: cost of optimal sol'n
– e: min one-step cost
– complexity = 

What is the space complexity of BFS?
– how much memory is required?

– complexity = 

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?
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UCS vs BFS

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



  

UCS vs BFS

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q
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a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand 
a shallowest node 
first

Implementation: 
Fringe is a FIFO 
queue

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)



  

UCS vs BFS

Start Goal

…

c  3

c  2
c  1 Remember: UCS explores 

increasing cost contours

 The good: UCS is complete and 
optimal!

 The bad:
 Explores options in every 

“direction”
 No information about goal 

location

 We’ll fix that soon!

Slide: Adapted from Berkeley CS188 course notes (downloaded Summer 2015)
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